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ABSTRACT

This report is concerned with the development and presentation of

orthiogonal main-effect plans. These plans permit uncorrelated

estimates of all main effects of both smrmmetrical and asymmetrical

factorial experiments with a minimum number of trials.

Chapters II and III outline some background material on fitting linear

models and factorial experiments which the user of this report may

find informativ.t. These tv,. chapters give a short review of existing

knowledge of factorial experiments and methods of aaalysing them.

Chapter IV gives an account of the development of orthogonal main-

effect plans for symmetrical and asymmetrical factor'-al exneriments.

The plans for asymmetrical experiments are based on the proposition

that if the levels of a factor occur with the levels of another factor with

proportional frequencies then the two factors are orthogonal. The

possibilities of blocking these plans, the efficiencies of the estimates,

the randomization procedure and the method of analysis are discussed.

The report concludes with a catalogue of orthogonal main-effect plans.

This catalogue consists of the treatment combinations of twenty-six basic

plans, involving factors with up to nine levels and vith up to eignty-one

Lrials, from which all orthogonal main-effect plans which can be

constructed with eighty-one or fewer trials may be deduced.
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I. INTRODUCTION

A. Preliminary Remarks

The purpose of this report is to present in as simple form as possible

a catalogue of plans by which the effects of : number of controllable

variables can be explored.

The general situation is that there are response or resultant variables

or outputs which are thought to depend on controllable variables or inputs,

as, for instance, the response of a chemical process, which is a resultant

variabie, depends on temperature of reaction, pressure, type of catalyst

present, flow rate of ingredients and so on. The situation is one of very

general occurrence as may be seen from the following examples from

widely different areas of human investigation.

Situation Response Inputs

i. Performance of college Number of lectures, method

freshmen students in of presentation, number of

mathematic s assignments

2. Performance of Types and quai*L;.s of foods,

astronauts other possible environment

stimuli, amount of training

3. Conversion of one Temperature, pressurc,

chcniical to another feed rates, catalysts,

contact time



Situation Response Inputs

4. Quality of an electrical Variables in method of

device production of device, such

as nature of alloy, of

resistances, rate of cooling

in production of parts

5. Growth of a I-'logical Amounts and types of

organism various nutrients

6. Yield of an agricultural Rate of seeding, spacing of

crop plantR, amounts of

fertilizers

7. Psychological status of Amounts of drugs, arrount

sick individuals and nature of psychoanalysis

8. Treat.nent of an illness Diet factors, drug factors,

amount of rest

Degree of delinquency Social and economic

of humans measures

The i eason for making a list like the above which could be extended

indefinitely is to show the range of situations which have the same

essential struc-tre. From the point of vw -,f designing an investigation

in any of these situations the problems are as follows:

(i) Defining in operational terms the resultant or response variables

of interest. In the above examples only one response variable is
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given, but one can easily imagine many others.

(ii) Defining the control variables. or nopu&s which should be

considerea- For various reasons statisticians referred to these

inputs as factors and this led to he term factorial experiments,

which are nothin • but experiments designed to investigate

several factors or inputs.

(iii) Defining the vari.nts of factors t) be considered, as for instance

temperature at 1500C, ZOO C. 250 C, or catalyst as

manganese or platinum oxide. It is fairl- qtandard to use the

:erm "levels" ' or these variants. In the .;etse of a factor like

ternperaiLure which can be envisaged as taking any value in a

particular range, that is, a continuous factor, the tevri "Ievel" is

clearly appropriate. For the case of discrete factor, or one in

which the variants cannot be represented as points on a line, the

term "Ie% els" 1is not as appi opriate because one variant cannot be

said to be at a higher level than another. But the use of the term

"levels" for both cases does not appear to be confusing to

scientists and technologists, and is so well entrenched in

statistic'l tcrmin-logy, that it will be followed here.

(iv) Specificition of the class of situations to which the inputs are to

oc applied and about which conclusions are desired.

(v) Choice of combinations of the inputs to be tested.

(vi) Assignment of the individual combinations to the members of the

class of situations.
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({ii) Specification of methods of interpreting the resultant data.

All the above are shorthand statements of problems each of which could

be given extensive consideration. Some of the problems are strictly in

the province c-f the experimenter. The statistician per se does not know

what yield variables are of interest, what possible inputs should be

considered, how the yield variables are to be measured, how the inputs

are to be controlled, what levels of the inputs are to be considered, and

what class of situations is of interest to the experimenter. The

sltistician can sometimes give advice on these matters, based on

ut rpeaabii~y bi~t~ ~fltro' variables, of pre-CG±5d~aU1ZU Yepea•ctLabliLY o •0tJULXity W a L LJ~•

cision and sensitivity of possible choices: variability of members of the

class of situations to be investigated, and precision of measurement of

yield variables. To evaluate whether a statistician can give help on these

matters, he will ask questions of the experimenter pointing out the

consequences of various conditions and choices and may on the basis of

the answers make suggestions ur merely content himself with the opinion

that the experimenter has already considered these aspects adequately.

It is when we turn to the latter problems of the above list that

particular knowlcdge of statistical design of experiments comes into play.

One may for instance envisage a situation in which there are say 10 inputs

or factors, each of which could be examined at several levels. The

naive reaction is to say: "Try all possible combinations", but when one

realizes that even if the number of level: choscn for each factor is 3

the total number of possible combinations is 3 10or 59, 049, one sees

th•L thi• is completely impossible. Also it may not be necessary. T-,
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see this we need to consider further the type of problem being attacked.

That problems can be classified is, we imagine, self-evident, but

possibly one of the real gains from statistical thinking is the existence

of a classification, which can of course be orny rough.

It will be convenient in what follows to use sometimes the phrase

"factor space". This is a short term for the totality of possible

combinations of the factors or inputs which is considered relevant. If

for instance one wishes to investigate temperature between 1500 C aitd

300 0 C, pressure between 10lbs/sq. in. and 20lbs/sq. in., flow rate

from 100 gallons per minute to 500 gallons per minute with no

restrictions as to what combinations of temperature, pressure and flow

rate are possible, the factor space can be represented as a rectangular

parallelepiped in 3 dimensions with perpendicular axes representing the

three factors. The interior of this parallelepiped then contains a

representation of all possible combinations of factors.

Even when the iesponse variables or output variables, and the

control or input variables have been defined, problems can be classified

accu,-ding to the end result desired;

VA. The aim may be to determine the combination or combinations of

input variables which gives maximum response or minimum

reziponse. This is entirely obvious in the case of a chemical

process in industry, or in the training of a skilled operator. For

brevity this problem is referred to as the problem of response

optimization. There may be several response variables which are

to be optimized jointly and one may then get into problems of

5



linear or -ion-linear programming as well.

(B) The aim may be to determine which of the possible factors, which

can be imagined as possibly affecting response, dn indeed have a

non-trivial effect. If one has a production line ihvolving many

distinct stages which is producing articles which are not acceptable,

one has the problem of determining which of the possible variables,

of which there can easily be 20 or more, are affecting the quality

of the end product. Ts-iF problem will be referred to as the

problem of screening of factors.

(C) The aim may be to obtain a rough idea of the effects of factors

applied jointly over a range of conditions. This problem has izot

had a particular name associated with it, and for lack of a better

term, we shall call it factorial evaluation, that is, evaluation cf the

role of the possible factors.

(D) The aim may be to obtain a continuous functional relationship of the

response (output) to the factors (inputs) like, for instance,

10
y=S+- + 7YxI x2

where y is the response, and xl, x 2 are the inputs. This

problem will be referred to as functional evaluation.

It is not our purpose here to discuss all these problems in detail, but

the following remarks indicate to some extent what is involved and what

general plan of investigation should be followed.

In the case of response optimization, L. 1-z not essential to obtain
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much of an idea of what factors are relevant, provided one has included

in one's list all the factors which are controllable. One can merely do

what might be termed local experimentation in the factor space. by

experimenting around a point in the factor space which is thought to be

the best guess of the optimal combinaLion. On the basis of this experi-

mentation one finds the direction in the factor space along which it seems

best to p-- ceed in search of the optimum. The formulation of a strategy

by which to do all this is a difficult problem, but some statisticians have

in recent years put forward some interesting ideas. It is of course

apparent that the more factors considered the greater the complexity of

assessing the experimental results. If there should be two or more

response criteria, the problem of optimum seeking becomes much more

complicated. For instance one might wish to determine the combination

of inputs which gives maximum percentage response of a chemical

process subjert to the restriction that one wishes to attain a purity

greater than a certab percentage, wit-th as low a use of catalyst as

possible. Some of the problems which occur on first thought may not

even be sufficiently well-defined to enable even the theoretical search for

a solution. They may also depend on obtaining a fairly good idea of the

functional structure of the situation, that is, the mathematical relation-

ships of the responses or outputs to the inputs.

In the case of the experiment for screening factors, the problem is more

one of dctermhinng !actors which are having appreciable eifects with a view

to more precise experimentation directed to aims AA), (C) or (D). For

instance, suppose that a certain step in a production process consists

7



of heating the uncompleted product entering that stage in a furnace for

two hours at l 0°C. One might ask whether it matters whethcr the

heating is don.;_ ior t much shorter tinme like half an hour or a longer

time IL- , hours. In other words is this a factor which merits some

detailed e>amination or can one assume that realistic changes in the

factor .evel are going to have an inappreciable effect on the resultant

product. A procedure commonly used for this sort of investigation is to

use the following plan in w"-W.h there are 6 factors and L denotes a low

level, H a high level (or in the case of a discrete factor, two interesting

possibilities):

" •Factor

Trial 1 z 3 4 5 6

I L L L L L L

2 H L L L L L

3 L H L L L L

4 L L H L L L

5 L L L H L L

6 L L L L H L

7 L L L L L H

It is not at all difficult to make a Convincing case that this plan is very

.iefficient. The problem is to evaluate 6 factors and the later parts of

this technical repcrt exhibit plans which can be shown to have greatest

efficiency and sensAtivity in determining whether factors merit further

study. These are the main-effect plans for which a c-.talogue is given.

The development and cataloging of these plans were the main object~ves

8



of the present research.

When we turn to what we have termed "factor evaluation", we are

interested in not only what factors have effects of non-trivial importance,

but whether also the effect of one factor depends on the status of other

factors at which this effect is determined. In standaLd statistical jargon

the question is "What are the effects and interactions of the factors ? ".

For this sort of task, the gamut of factorial experimentation as developed

over the past 30 years is rel-vant.

Finally when we consider the evaluation of functional relationships we

not only want to know what factors and interactions are present but we

want to express the relationship in as scientifically meaningful way as

possible and we have to take account of the units in which factor levels

are measured, and have to search for underlying variables which may be

composites of the variables on which we choose to experiment. For

instance we may experiment on a variable v which is, say, a velocity,

but the way velocity enters into the determination of response is in

terms of (v + b)1/Z

Tihere are common elements to all these aims and there are no sharp

divisions among them. In many cases finding the optimum is the

ultimate aim, but screening of factors and looking for the possible

existence of interactions is undertaken first. Similarly screening of

factors and evaluation of interactions may well precede the search for a

functional relationship. So the approach to a problem of science or

technolugy is a matter of judgment. An aim of the theoretical study of

design of experiments is to construct a rationale to aid the reaching of

9



such a judgment.

B. Genera! Background of Material Presented

The aim of the research underlying tl;s report is to present a

catalogue of plans which will enable the experimenter to screen factors.

The plans enable the estimation of the effects of all the factors included.

Any such estimation is unbiased if there are no 'nieractions. If there are

interactions estimates obtained by a model assuming absence of inter-

actions will be deviate from their true values by other th., r ezpelimental

error. This should not be regarded as a deiiciency of the -r-.. because

the essence of research is the obtaining of ideas which are subjected to

confirmation. To demand that an experiment have a completely

unarmbiguo,,s interpretation is realistic only if the experiment will not &

rcpeated, that is, if it is a terminal one, and such experiments must be

rare. No decisions in research are irreversible, and knowledge

possessed at a particular point of time is at best an approximation to the

truth and at worst completely fallacious. Questinns underlying this state-

ment can easily be fomulated, and one may question, for instance, the

risk., involved in any plan of investigation.

In addition to the non-terminal nature of research conclusions, one

must also take into account what might be termed the economy of research.

One can envisage using, at a particular stage of an experimental investi-

gation, a range of plans from the smallest and least-time-consuming plan

which will enable one to get some ideas, to a large expensive plan which

will give clear-cut unambiguous answers. With the former there is the

risk of reaching erroneous conclusions, but the advantage of getting a

le



rough picture quickly. With the latter the risk of reaching erroneous

conclusions will be low, but the chance of reaching conclusions which are

highly uninteresting may be quite appreciable. Also if the experiment is

to take, say, 3 months to perform, one may well find that the ideas which

led to its being planned have been modified by experience and knowledge

acquired since the planning, so that the "big" experiment only partially

done is clearly inappropriate and misdirected. In the case of technologi-

cal experiments in industry there is obviously a value to be gained from

approximate conclusions obtained quickly. Even in what might be termed

pure research of no conceivable economic or social value, the researcher

will be concerned about the utilization of his own tirne and energy. It is

apparer.t that one should commit oneself to a large experiment which is

seeking a detailed picture only after one has identified factors or inputs

which are known to have interesting effects and interactions.

The catalogue is then a catalogue of experimental plans which are

likely to be useful in .exploratory research. The adjective "exploratory"

here is not meant to imply research based on little k,-.owledge but research

perhans in an area which is highly developed, where one wishes to obtain

a quick idca of which factors whould be investigated mere deeply and

which factors should be ignored. There are of course risks involved in

ignoring a factor or in deciding that variation in levels of that factor is

n.t worth including in the investigation. It may be that the factor has an

interesting effect in only a small range, as, for example, a biological

stimulus such as aa estr-.gen. For example, it was known for years

that stilbestrol caused some species of animals to have increased

growth rates, but it was found that with doses which were thought to have

11



"any possible effect the side effects were intolerable. Later it was found

that doses which were small relative to doses previously tried had the

udesired effects with none of the undesired ones.

There is some further insurance of uncertain value in the use of these

plans, which arises from the empirical conclusion that there are not

likely to be sizeable interactions if there are no main effects. This does

emphasize that one should, by one way or another, have some check on

the magnitude of error in .ie situation being examined, because the

determination of whether there are effects of interesting magnitude

depends on two things (') whether the actual numerical magnitude is

interesting and (ii) whether the actual magnitude is sizeable, say of the

Sorder ol •1 or 2 times its standard error.1

The catalogue of plans enables an experimenter to discover quickly

what plans are available for his particular situation. He may for instance

wish to look at two factors at five levels, three factors at four levels,

two factors at three levels anzi one factor at two levels. In the technical

language common to the area of the design of experiments, be is involved
52 43 2

in a 5 x 4 x 3 x 2 factorial situation. To list all possible plans would

be an impossible task and we have confined ourselves to plans which

require no more than 81 observations. T he plans listed are orthogonal

ones, that is, they enable best unbiased estimates of e,.ects of all

factors which are uncorrelated. Even to set out all the possibilities in

this case would be tedious but some condensation of the listing is

accomplished by giving an index with instructions, s8 that plans can be

used with minor modifications for other situatio. s.

12



One modification of standard plans which is always possible has been

little used in the past. This modification was used in the construction of

the plans and can be used to a wider extent. If we have a situation like a

.2 3 2 85 x 4 x 3 x 2 mcaticned above we can use a plan for a 5 experiment

and replace three five-level factors by four-level factors, two five-level

factors by three-level factors, and one five-level factor by a two-level

factor. in the last case one would set up the following correspondence:

level of five- .-vel factor 0 1 2 3 4

level of two-level factor 0 1 1 1 0

Thus levels 0 and 4 of the five-level factor are replaced by the 0

level of the two-level factor and levels 1, Z and 3 of the five-level

factor by the 1 level of the two-level factor. If one really wanted to

experiment with some six-level factors one could collapse a seven-;evel

factor plan. This results in a little loss of statistical efficiency, bu, not

enough to worry about. At least it seems preferable, to the present

authors, to encounter a small loss in efficienLy in order to accommodate

the six-level factor rather than to force the experimcnter to delete one of

the levels he likes or otherwise revamp the situation. Of course there is

no point in introducing levels merely r the sake of doing so, and the

more levels that are included for a particular factor, the more trials

a -e required.

C. Structure of the Material Presented

The analysis of the orthogonal main-effect plans, i. e. estimation of

parameters, estimation of error, tests of significance, is the standard

13



one based on the method of least squares and a brief account of the

features of this method is given in Chapter II.

The basis for most of the plans is the concept of factorial experi-

mentation and the elementary ideas of this topic are presented in Chapter

IIi. The notions of confounding and fractional replication which are

essential in the logical development are also presented. In order to

present factorial experiments in which the factors have a number of

levels equal to the power of a prime number some elementary concepts

of Galois field theory are discussed.

In Chapter IV the origin and structure of the plans given in the

catalogue are presented. The efficiency of the- plans is described and

possibilities of blocking are discussed.

The construction of the basic plans presented in the catalogue is

described in Chapter V. Several examples of orthogonal main-ef'ect

plans constructed from the basic plans are giveli and an index of J:.e planz

which can be obtai-ed from the catalogue presented. The catalogue of

basic )rthogonal main-effect plans then conclude the report.

D. Notes on Terminology

We give below a short list of terms which occur in the presentation

with some explanation of their meaning.

(i) A Factor designates a particular force which is varied in the

L•Lal invcstigation at the will and under the control of the

experimenter. A factor is also called an input variable or a

controlled variable.

14



(ii) A Quantitative Factor is one whose values can be arranged in

order of magnitude. Such values can usually be associated with

points on a numerical scale, e.g. temperatures or pressures.

This type of factor is also called a continuous factor in the

literature.

(iii) A Qualitative Factor is one whose values are not usually arranged

in order of magniLude, e.g. type of dosage, batches of material.

Although the values of mnany qualitative factors can be ordered

according to a particular criterion they cannot usually be

associated with points en a numerical scale.

(iv) Levels are the various values at which a factor is examined, e.g.

the levels of temperature in an investigation may be 00 C, 500 C,

100 C and 150 C.

(v) A Treatment Combination is one of the possible combinations of

levels of all factors under investigation.

(vi) An Experimental Unit is that entity on which a treaxxient is

applied. In experimentation on mice, a single mouse may be the

unit. In agronomic investigations the unit is frequently a plot of

land. In experimentation on a chemical process the unit could be

the system for a prechosen interval of time.

(vii) A Trial is the application of one treatment combination on one

experimental unit.

(viii) A Response is the result nf a trial with regard to a particular

attribute, this result usually being expressed numerically. The
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response may be the yield of a process, the performance of a

machine, the resistance of a material and so on. Usually there

will be several response variables for each trial.

(ix) An Experiment is the performance of a planned set of trials.

(x) A Plan is a set of treatr.-ent combinations.

(xi) The Effects of a factor are measures of the changz in response

produced by a change in the level of the factor. When a factor is

examined at two levels only, the effect is the difference between

the nveragc response of all trials performed at the first level of

the factor and that of all trials at the second level. If there are

more than two levels the differences between average responses

can be expressed in several ways e. g. linear effects, quadratic

effects.

(xii) Error is the variability of response in a set of repetitions. It

usually consists of components of different origins, e.g. failure

of units to be identical, failure to reproduce treatment combina-

tions exactly, inaccuracies of measurement of responses.
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II. FITTING LINEAR MODELS OR REGRESSION ANALYSIS

The basis of most parametric analyses of experiments is closely

related to the theory of fitting linear models and is frequently referred

to as multiple regression . Regression analysis can be defined as the

estinmation or predtiction of the value of one variable from the values of

other given variables.

The assumption "n regression analysis is that a variable y may be

expressed as a linear function of some known variables x 1 , x 2 , ... , x
p

(which may be functionally related) with uncorrelated random de'iations

2
which are distributed around zero with cons-,.;it variance o . This

linear function may be expressed as

y P = +xI+P2x 2 +''" +-pX + e
pp a

where xi, xZ, ... , x take on a particular known value of each a,p

say, Xai, x 2 , .... x p. Frequently x al = I for all a.

The best linear unbiased estimate of the 1's is obtained by

minimizing the sum of squares of deviations

E (YCL - lxi - PzX 2 - ... - pXp)2

The term regression was originally introduced to describe, partially,
the relationship of one random variable, the dependent variable, to
adrother random variable, the independent variable. In contexts for Which
regression analysis is widely used, the independent variables are not
random variables, so the term is not entirely appropriate.
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This procedure is known as che method of least squares. Differentiating

the sum of squares of deviations with respect to each of the P's in

succession the following equations are obtained:

PlXl+ •r lZ ... + f3~X 1 X --=~

P ZX 2axa + P2Zxa2 + I X + P ZX 2Xp =- ZYx

P, Zxl x + P2 "' + + A Zx LP = Zyaxa z 2 azp p az p r.cp

These equations are known as the normal equations. If, as is generally

the case in regression problems, the x.Is ai, not such that one or more
i

linear functions of them are zero, then a unique solution of the above set

of p simultaneous equations exists. In order to solve them, first solve

p sets of p equations the first set of which is written as follows, using

S.. = S.. as an abbreviation for :Ex ax .

C1S11 +C2SlZ+... + CpSlp =

Cs 1 2S + C 2 S 2 2 +.. + CSp = 0

CISlp+ C2S2p+ + CppSp pp 0

Denote the solutions of these equations by C 1 1 , C 1 2 , ... , Clp, the

first subscript indicating that this is the solution for the first set of

equations and the second subscript denoting the particular C solution.

Next solve these equations with unity on the right-hand side of the second

equation and zero on the right-hand side of all the other equations, the



solution being denoted by C21, CZ2, ... , #CZ. Similarly solve the

equations with unity at the right-hand side of the third equation, the

th
fourth equation, and so or. to the p equation, in each case the right-

hand side of all other equations being zero.

The solutions can be arranged in a pxp sqtiare as follows:

FC11 C12" C lP1
C21 r.22C C.2p

This arrangement of thte solutions is known as a matrix and is the

inverse of the matrix with S.. in place of Ci. The solutions for

-... p are found to be-•3 = C'" P. where P. = 2 y-jx.-

It will be noted that the C..'s are derived entirely from the x..ýs;Ij IJ

that is, they are a function of the structure of the observational setup and

are not related to the y's or to the els. The quantities estimating the

P's are linear functions of the y variables. The expectations of the

P3s are easily found to be the corresponding 13s, the variances of Pi to

"be C Ua and the covariance of any two prs, say Pi and P to be

C 11 2. An estimate of r 2 is derived from the sum of squares of

deviations about the estimated values and is given by

(r = s = -F -1; (y " P•Z " px p)

n-p a a
112

19



where EP, P. is the sum of squares removed by the regression on

x 1 , X2 , ... , x . The results may be expressed in terms of the analysis
P

of variance, as shown in Table 1.

TABLE 1

ANALYSIS OF VARIANCE

Source d.f. Sum of Squares Mean Square

P ' - Z
Regle;sion p ;P; YPPi P S/

i=l

Remainde, (n-p) Difference Difference/n-p = s

n
Total n 1; y

Q= I

In order to test the significance of the regression coefficients

(the Pi Is) the random deviations e are assumed to be normally and
2

independently distributed about a zero mean with constant variance - .

With these assumptions the significance of the regression coefficients

can be tested jointly by evaluating the mean squares in the analysis of

variance and comparing the ratio s a /s to the F distribution with p
p

and (n-p) degrees of freedom.

With the extended assumptions on. the random deviations e one can

also construct confidence intervals for the estimates of each Pi. Since

the estimated variance of •. is C- as then (i- /s A is

distributed as Student's t distribution with (n-p) degrees of freedom.
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Hence the 950 confidence intervals on are given by

Suppose we rename the regression coefficients P I, P .. PqV

Pq+ . p and we wish to test whether Pq+I' Pq+2V "''' P could be

zero makiz;g no assumptions aboat the remaining coefficients.

The procedure is as follows:

(i) Estimate the regrezsion coefficients in the model

ya , f3 1 X + P2 x 2 + + P x + e
p p

obtaining P1 , P2 ... , P . The sum of squares removed by thep P ^the regression on xl, x 2 1 ... , x is equal to Z Pi Pi.p i= 1

(ii) Estimate the regression coefficients in the model

YCL P Xl + PZX2+" ++qxq + e

obtaining P, f, *.., P. The sum of squares removed by the
q

regression on xl, x2, ... , x is equal to p
q i=l I 1

(iii) Construct the analysis of variance given in Table 2.
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TABLE 2

ANALYSIS OF VARIANCE

Source d. f. Sum of Squares Mean Square

q
Regression on xif .... x qil P. S

q q

Regression on Xq~, .,Xp Pq q 2

after fitting x 1 * .... X p-q Pi Pi - Z 1 iPd

PA 2
Regression on x 1 ,...,x p . Pi P. sP i=- 1 p

Remainder n-p Difference s

n 2
Total n Z ya

a. I

To test the hypothesis that •q+l' " . P are zero we utilize the

fact that under the hypothesis that they are zero the ratio sd /s will be

distributed as F with (p-q) and (n-p) degrees of freedom and thus

compare sd2 sZ with the ý.-,iue in the F table corresponding to (p-q)

and (n-p) degrees of freedom.

[he usual regression test devised to test whether deviations about

the mean have a regression on the indepcndent x variates may be

deduced from the above discussion. The complete hypothesis is that

ya = PIXl + Px 2 +.". + p xp+ ea

22



and the restricted hypothebis that

y L= PI 1 + e

where xa is unity for all values of a. The estimate Pt is y and the

sum of squares due to the regression on x, (i. e. the sum of 3quares

due to the mean) is y -y. The "correction for the mean" y Z y, with

one degree of freedom may be deducted from the total sum of squares

and the analysis is given in Table 3.

TABLE 3

ANALYSIS OF VARIANCE

Source d.f. Sum of Squares Mean Square

Regression on x 2 ... ,X p-I P EP.
i=Z ic r

Remainder n-p Difference sz

n 2 n
Total n- I E Ya" -y E y•"Ym &= I CL= I

P.ic = P. - xil Zy( denotes the sum of products around the mean.

Much of the preceeding discussion can be simplified through the use

of mat-ix notation. The linear function expressing y as a function of

the x variates may be written as

y = XP3 + e

Z3



where

Yl x 1X iz ''" X lp e eI

YZ . . . . . . .

Y = Y .a X Xa CL. x ap = . and e= e a

Lyn X nI XnZ "' Xnp L p e n

The sum ot squarer to be minimized is

ele = (y- X) (y - XP) = yly -Z7PX'Y+ P2X'XP.

The normal equations are

SP= Xly

where S = X1X.

If S is non-singular then P = S_ X t y and the variance-covariance

matrixc of the estimates is equal to a- S . The estimate of a- is

given by

= (y - XP•)(y - Xp)/(n-p) = (y ty - P'X t y)/(n-p).

The results presented above will be utilized in the chapters which

follow and matrix notation will be used whenever it simplifies the

presentation.

There arises the problem of how should a-2 be estimated if n = p

(i. e. the number of parameters to be estimated equals the number of

trials). The estimate of a-2 based upon the sum of squares of

deviations about the estimated values of the parameters is sometimes

called pure error. If n = p it is clear from the formula for a" that no

estimate of pure error can be derived from the experiment., In such a
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situation there ar, two possible ways of resolving the problem. First,

the experimnenter may be investigating a process for which the experi-

mental error is already known. In this case the error obtained from

prior ;nformation may be used as an estimate of T . This estiinate of

o- can then be based on infinite degrees of freedom and the estimation

and test of significance procedure cati, bc made as if the estimate of

experimental error had been obtained from the experiment itself.

A graphical procedure fo. analysing factorial experiments developed

'-y Daniel (1959) may be useful in obtaining a rough estimate of error.

This procedure uses a half-normal grid on which to plot the absolute

values of the contra.-ts defining the ma:na effects and interactions of a

factorial e-xperiment. If these contrasts are arranged in order of

absolutc magnitude and plotted on half-normal probability paper they should

fall aieng a straight line, if all factors have no effects.

A half-normal grid can be prepared by taking a sheet of arithmetic

(normal) probability paper, deleting the printed probability scale P, for

the range P < 50% 4nd replacing each value of P > 50% by the corre-

sponding valae of PI ZP - 100. The relation

PI= (ii = 1, 2. N,

where N is the number of main effects and interactions to be estimated,

is used for plotting the empirical distribution o0 cori rasts. The abscissae

are the absolute values of the contrasts.

Under the null hypothesis that all factors have no efiects the standard

error oi each contrast 0-c could be roughly estimated b6 Lhe contrast for

which P2 is most nearly 0. 683. If it is known that sinc" effects or
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interactions are likely to be real and it appears from the graph that they

are, then they should be judged real and the remaining contrasts used to

determine the standard error i. e. reduce N by the number of real

effects and/or interactions in the formula P2 = (i - ) and then

estimate the standard error of a contrast by the absolute value of the

contrast for which the new P2 is most nearly 0. 683. If a straight line

is drawn through the origin and the absolute value of the contrast for

which PI is most nearly u. 683 a rough idea of which effects and

interactions are significantly large can be obtained. These will faUl far
Z

to the right of the line. An estimate of the experimental error, r , can

be obtained from the formula

.,z 1111.
a- =±a /rC(N+1).

The estimate of experimental error is based upon N degrees of A-'eedom

and although it is approximate and deduced by subjective reasoning, it

does give some inf rmation about the experiment that would not be

forthcoming without an estimate of error. The reader who is interested in

this technique can find many illustrative examples of its use in the paper

by Daniel (1959).
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III. FACTORIAL EXPERIMENTS

When an experiment involves several factors, the effects of all

factors on a characteristic of interest may be investigated simultaneously

by varying each factor so that all or a suitable subset of all possible

-ombinations of the factors are considered. An experiment in which this

procedure is used is known as a factorial experiment.

A. Factorial Experiments with Factors at Two Levels

The simplest and most common factorial experiments involve factors

which occur at two levels. The two levels of a factor, may be denoted by

0 and 1. A treatment is denoted by a particular combination of levels,

one level from each factor. The treatment combination for which all the

factors occur at the 0 level can be simply denoted by (1). The 1 level

of a factor, say factor A, can also be represented by the lower case

letter a. A factorial experiment involving three factors A, B and C

each at two levels would consist of the following treatment combinations:

(1), a, b, ab, c, ac, bc and abc. In these combinations the presence of

a letter indicates that the corresponding factor occurs at its 1 level and

the absence of a letter indicates the corresponding factor occurs at its 0

level.

The .-main effect of factor A is defined to be the c;fference between

the mean of the yields at the I level of factor A and the mean of the

yields at the 0 level of factcr A.

Hence the main effect of A is 1(a+abi ac+abc)-!((!)+b+c+bc)4 4

which can also be written as
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A (a-1)(b+l)(c+l)

where the expression is to be expanded algebraically and the responses

substituted for the treatment symbols. The effects and interactions of

the 23 factorial experiment are given by

A = 1 (a-1)(b+l)(c+l)

B 4 (a+l)(b-1)(c+l)

1

AB = t (a-l)(b-1)(c+l)

C = i (a+l)(b-i 1)(c- 1)

AC=1 (a-1)(b+l)(c- 1)AC =

BC = 1 (a+l)(b-1)(c-1)

ABC=1 (a- 1)(b-l)(c-1)

a minus sign appearing in any factor on the right if the letter is present

on the left. We will adhere to the convention that treatment combinations

are represented by lower-case letters and effects and interactions by

capitals.

It will be noted that the effects and interactions are seven mutually

orthogonal contrasts of the responses of the eight treatment combinations.
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(1 a b ab c ac bc abc

4 A - + - + - + - -.

4 B - - + + - - + +

4 AB + - - + + -

4 C -. . . . + + + +

4 AC + - + - - + - +

4 1C + + . . . . + +

4 ABC - + - + - - +

Orthogonality of two linear contrasts may be defined as follows:

Consider two linear functicns, C1 and C.., of the variates

X1 , xz, ... , x where the x2s have the same variance and are

uncorrelated.

C a lXl+ aCZ x 2 + +a Xn

C 2  P= iX 1 +P.x+... +PnXn

where ai and Pi may assume any values, not all zero. A necessary

and sufficient condition that the two linear fu:;ctions be orthogonal is

n
Z a. Pi = 0

i= 1

If the mean response of the eight treatment combinations is denoted

by p. the effects and interactions are represented by
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r8 1 1 1 1 1 (1)
4 A -1 1 -1 1 - 1 -1 1 a

4 B -1 - 1 1 -1 -1 1 1 b

4 -i t ii -1 - 1 ab

4C -i -1 -1 -1 1 1 1 1 c

4 AC 1 -1 1 -1 -1 1 1 1 acS'Li
4 Ii { 1 -1 -1 -1 -1 1 1 j bc

4 ABC [-1 1 1 -1 1 -I -1 1 abc

With u factors A, B, C, D, etc. the effects and interactions may be

represented by
1

X (a + 1)(b + 1)(c + T)(d+ 1) ...

where the sign in each bracket is positive if the corresponding cap,.al

letter is not contained ;n X and negative if it is contained in X, anxd ".he

whole expression or the right-hand side is to be expanded algebraically

and the yields substituted in place of the corresponding treatment

c ombinations.

The choice of the divisor in the above expression is a matter of

convention only and depends upon the definition of an effect or interaction.

Here we have defined an effect or interaction on the basis of the difference

,etween two experimerival units.

The response of a treatment combination may be written as

a, b. ck.. where absence is denoted by the subscript taking the value- j

zero and presence by the subscript taking the value unity. Then

a b.c A+ !B4- AB + 1 C + !.AC + .
aibck .... -B A + AZ+...3
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1

where the sign on iA is - if i =0 and + if i = 1

on -B is - if j = 0 and I if j = 1
1

on iC Ls - if k=0 and +ifk=1

and so on,

and the sign on a term involving several letters is the producL Uf the

signs on the individual letters.

If a 2 n experiment is replicated r times in randomized blocks of

Zn1 plots each effect or interaction is estimated by the mean of r n-l

responses minus the mean of r 2n- response.- and therefore has a(I 1 2 2 zn-2
variance of (-4n + r i2 = - I/r 2 - Furthermore ther 2r 210-

estimates of effects and interactions are uncorrelated so that the

variance of any linear function of them can be easily obtained.

B. Factorial Experiments with Factors at More than Two Levels

The .-nTh system

With factors at three levels the effect of any one factor may be

expressed in several ways. Pirst the response at each level, where the

level is represented by 0, 1 or 2, can be expressed as a deviation from

the mean response at the three levels, giving say A 0 , AI and Az where

A0 + A1 + A. 2 = 0. Another approach is that the main effect of a factor

can be represented by independent comparisons among the means corre-

sponding to the different levels of the factors. Among three independent

quantities there are two independent comparisons. The comparisons

which are of interest will depend upon the nature of the factors, i.
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particular whether they are qualitative or quantitative.

If the levels are qualitative and the 9 level denotes the control and

the other two denore treatments the comparisons of interest may be

(i) a comparison of the two treatments and (ii) a comparison of the

average of the two treatments with the control. These comparisons can

be expressed as

AT z (Za 0 - aI - a.)

A"1  a1 - a.

respectively, where a 0 , a 1 and a 2 denote the responses with factor

A at the 0, 1 and Z levels.

For most quantitative factors the ccunparisons of interest will be

those giving the most information on the relation between the responses

and the levels, namely the slope and the curvature. This can be

2
reprcscnted by a polynomial expression y = a0 + aX+ azx , where x

denotes the levels of the factor and y is the response variable. The

linear and quadratic effects of factor A may be written as:

AL = (a2 - a 0 )

AQ = (a.- Za 1 + a0 )

Thc quadratic effect is the linear contrast among a 0 , a 1 and a2 which

is orthogonal to the linear effect.

Now consider two quantitative factors A and B, each at three

equally spaced levels. The interaction of these two factors will be the

interaction of a 3 x 3 table and will have four degrees of freedom.
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These four degrees of freedom may be separated into orthogonal

contrasts each with a single degree of freedom.

ALBL = (a. - ao)(b, - bo)

JQ BL (aZ - ZaI + a 0 )(b 2 - b 0 )

ALBQ (a 2 - a0 )(b 2 - Zbl + b 0 )

A BQ B (a 2 - 2aI + a0 )(bZ - 2b1 + b0 )

Tbis system of expressing .ne results may be extended indefinitely.

Several conventions have been used to define the main effects and

interactions, each convention having some merit. One common

convention adopted is to deiine the effects and interactions on the basis of

the difference between two experimental units. Adopting this convention

the main effects and interactions of an experiment on two three-level

factors A and B, are given by

A = i(a. a0!(b0+ b, + b2)L 3

A =1- (a -Za + a,)(b 0  b + b2 )-- 1
B = .(a 0 + a, i a)(b. - b0 )

B - 1 +z(obIz
BLU = ({a2-a a0)(b0 - 2bI + b)A L 1

ALBL = -(a0 -a )b
A Q = 4(a - a +)(b 0 - Zbl + b

Q L 4(a 0 2 1 +a)b-

AQB2=1i a - Za 1 + a2 )(bo - 2bl + b2 )

The convention adopted does not alter any tests of significanc:
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performed on the pardmCters and therefore need be of little concern to

the experimenter.

There is a class of experiments involving quantitative and qualitative

factors in which the treatment ccmbinations have an appearance of

consisting of a full set of factorial combinations but are not in fact so.

A qirnple example of this type is that in which there are three eoually

spaced amounts, including a zero amount of a particular treatment

administered by three me'..,ods. Since the zero amounts of the treatment

administered by the three methods are identical treatments there are only

seven different treatmPnr combinations and not nine. The experimenter

must consider whether he should use the nine treatment combinations as

though they were all distinct or only the se'-,n distinct combinations, and

further he should consider the method of analysis in each case. For a

more detailed discussion of this type of experiment the reader is

i eferred to section 18. 8 of Kempthorne (1952).

We now present a formal method of defining effects and interactions.

Consider the case of three factors A, B and C each at two levels 0

and I. The eight treatment combinations (1), a, b, ab, c, ac, bc, abc

may be representec by the points (0,0,0), (1,0,0), (0, 1,0), 01, 1,0),

(0,0, 1), (1,0: ,, (0, 1, 1) and (1, 1, 1) respectively, in Euclidean

space with axes x1 , x 2 and x 3 , the first coordinate referring to the

level of factor A, the second to the level of factor B and the third to the

level of factor C. The effects and interactions defined previously have a

simple algebraic interpretation. The effect of A is the comparison of the

treatment combinations for which x 1 = 0 with those for which x 1.
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Likewise the effect of B is the comparison of the treatment combinations

for whic... x2 = 0 with those for which x× 1 and the effect of C is the

comparison oi the treatment combinations for which x3 = 0 with those

for which x3 = 1. The interaction AB, for example, is in the former

notation the comparison among treatment combinations,

(1) + c + ,b + abc - a - b - ac - bc

e. of the points (0,0,0), (0,0, 1), (1,1,0) and (1, 1,1) versus the

pnint- (1. 0. 0), (0, 1, 0), (1, 0,1 ) and (0, 1, 1). For the points (0, 0, 0)

and (0, 0, 1), x1 + x2 = 0 and for the points (1, 1, 0) and (1, 1, 1),

xi + xZ = 2 and for the other four points, xI + x2 = 1. If the numbers

are reduced modulo 2, that is, any number is replaced by the remainder

when it is divided by 2, the interaction is the comparison of those

treatment combinations for which x1 + xL = 0 (mod Z) versus thos. for

which x1 + x z = 1 (mod 2). It is easily verified that the effects and

interactions are bas .d on a comparison of two groups of treatment

combinations given by the equations in Table 4.
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TABLE 4

ECUATIONS REPRESENTING EFFECTS AND INTERACTIONS

Eff.ct or Left-Hand Side
Interaction of Equation

A x

B x

AF x I + x 2

C x3

AC xI + x 3

BC X 2 4 x3

ABC x 1 + X2 + x 3

For example the treatment combinations entering ABC with a minus

sign are (1), ab, ac and bc and for these x1 + x x3 = 0 (mod 2) and

the treatment combinations entering with a plus sign are a, b, c, and

abc for which xI + x2 + x3 = 1 (mod 2).

The above approach for the 2 n system suggests the appropriate

approach for the 3n system. Consider the arrangement of the nine

treatment combinations with two factors each at three levels.

Level of factor A

(0,0) (1,0) (Z, 0)

Level of (0,1) (1 1) (2,i)
factor B

(0,z) (1,2) (2,2)

xz
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T^h main effect of factor A can be represented by the comparisons

Samong three means: those for which xt =0, for which x 1 : 1 and for

which x= 2. A representation of these effects as two linearly

independent numbers may be obtained by considering each mean as a

deviaticn from the over-all mean. The interaction of factors A and B

has four degrees of freedom. These four degrees of freedom can be

considered from the point of view of the completely orthognnalized 3 x.

square:

A Q B C
a.

By C A

C A Ba

The comparisons among the columns give the effect of factor A, and

among the rows the effect of factor B. Those among the Latin letters

and those among the Greek letters each with two degrees of freedom

represent the four e•grees of freedom for the interaction of the two

factors. Consider the following grouping given by the Latin letters-,

(0,01. (Z, 1), (1, Z) versus (1,0), (0, 1,, (2, 2) versus (2, 0), (0, ), (I, ).

For this grouping the comparisons are among those treatment combinations

for which x1 + x 2 = 0, = 1, = Z (mod 3). Similarly the comparisons among

the Greek letters are comparisons among the treatment combinations for

which x + Zx 2 = 0, = 1, = 2 (mod 3).

The pair of degrees of freedom corresponding to the equations

)c + x2  0, 1, = 2 may be denoted by the symbol AB and the pair

corresponding to xl4- Zx 2 = 0, =1, =2 by AB 2  The interaction degrees
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of freedom may also be represented by BA and BAZ respectively,

It is easily verified that the comparisons among the groups of treatment

combinations represented by BA and BAZ are the same as those

represented by AB and AB respectively. It is necessa-ry, in order

to obtain a complete and unique enumeration of the pairs of degrees of

freedom, to adopt the rule that an order of the letters is to be chosen in

advance and Lhat the power of the first letter in a symbol must be unity.

If the power of the first le'.er of a symbol is 2 then by squaring the

symbol and using the rule that any letter cubed is to be replaced by unity

the power of the first letter will be unity. This process may be extended

indefinitely. For three factors the results are shown in Table 5.

The extensions are quiLte straightforward and need not be enumerated.

For the 3n system there are n indepeudent factors and their generalized

interactions, giving rise to ( 3 n -1_)/ symbols each representing two

degrees of freedom.,

The symbols used above to denote pairs of degrees of freedom can

also be used to denote the magnitudes of effects and interactions. Each

symbol represents a comparison among three groups of 3 n-1 treatment

combinations, examples of which are:
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TABLE 5

EQUATIONS REPRESENTING EFFECTS AND INTERACTIONS

Effect or Left-Hand Side
Interaction of Equation

A x1

B x2

AB xI + xz

AB 2  xI + Zxz

C x 3

AC xI + x3

AC 2 x 1 + gx3

BC x + x3

BC 2x 2  + Zx3

ABC x + x2 + x3

ABCZ x + 1  + zx 3

ABzC xI + 2 x2 + x3
AB 2C 2 xI + ZX 2 + Zx 3

A0 = (mean of treatment combinations for which x, 0 (mod 3))

- (mean of all treatment combinations)

AB0 = (mean of treatment combinations for which x, + x. = 0

(mod 3) ) - (mean of all treatment combinations)

AB = (mean of treatment combinations for which x1 + Zxz = 1

(mod 3) - (mean of all treatment combinations)
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A B2 C, = (mean of treatment combinations for which x I +X = +

(mod 3) ) - (mean of all treatme nt combinations).

With these definitions the response of treatment combination

"a b. ck in terms of effccts and interactions is

"ab. c p.+ A. + B. + AB +AB 2 +C +AC ~AC 2 + BCibj k i j i+j + i+ .j k i+k + i+Zk j+k

+ BC k + ABCi+I k+ABC I.+,k + AB Ci.,j+k

+ AB2 C +j+ 2 k

where all subscripts are reduced modulo 3 and V is the mean of all

combinations. For example, tne response of treatment combination

*a1 b0 c is given by

a*b 0 c0 = IC+A 1 + B 0 +AB 1 +AB+ C 2 + AC0 " 1AC + BC 2 + Br 1

+ABC 0 +ABC 2 + AB C 0 +AB2 C.

Thus it is possible to express any linear contrast of the responses in

terms of the effects and interactions.

Now suppose that the treatment combinations are tested the same

number of times in a randomized block trial. Then, with an additive

model, the obserred response will be equal to a true response plus an

error. The errors may be regarded as uncorrelated with mean zero and

2
constant variance a- . Then the best estimate of any contrast of the

true responses is the same contrast of the observed means.

The only estimable functions of the parameters are functions of the
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type ai - j. where ai is one of the set of symbols A, B, AB, ABZ

ABC etc. and the i,j have values equal to 0, 1 or 2. It is easily
verified that the estimates of quantities ai - a. and Pm - P n' where

a, P are different ones of the set of symbols are uncorrelated.

Consider the nine treatmcnt combinations of the 32 factorial

experiment written in terms of effects and interactions.

" a 0 b0  = A+ A 0 + + AB0 + AB02

S al b0 0 S+1+B +A1+A1

"1 b1=i + A1 + BI+ AB, +AB02

0 2

"a bZ + A + B2 + AB0 + AB 2

a b0 = +A+ B0 +AB +AB21 1

"ab = +A, + B + AB0 +ABI2

"ab = +A,+ B + ABO +AB2i 2 2
"a bo = L+Ai+Bz+AB?+AB 2

2 2
a b, = 1 + A + B,+ AB + AB 2

z~b I A B+B+B

a b2  = .+ Az+ BZ+ ABI +AB 2

The estimate of A - A 0 , say, is clearly equal to a constant timzzes

(aZb 0 + a 2 b 1 + a 2 b 2 - a0 b 0 - a0 b1 - a0 b2 }

and "he estimate of B2- BI is equal to a constant times

(a 0 b2 + al b 2 +a 2 b 2 -a 0 b 1 - a b 1  a2 b1 )

The coefficients of the treatments for the above two contrasts are,

apart from the constant multiplier
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a 0 b0 a 0 b! a 0 b 2 aIb0 aIb Iibz a2b0 a2bI a b2

A Z-A -1 -- 1 1 0 0 0 1 1 1

B 2 - B 1  0 -1 1 0 -I 1 0 -1 1

Since the sum of the products of corresponding coefficients is zero

the two contrasts are orthogonal.

Among the three deviations from the overall mean A 0 , A 1 and A.,

say, there are two independent contrasts. These can be represented by

the contrasts A 2 - A 0 and A 2 - ZA 1 + A0. If the same types of

contrasts are utilized for each of the other symbols, it is possible to

obtain eight orthogonal contrasts.

Since in each of the two systems of defining effects and interactions

the treatment combinations can be written in terms of the effects and

interactions it is not difficult to determine the relationship of one ystem

to another. For example, in the 32 experiment on factors A and L

AL a a b 0 + a b 2I + az b 2 a0 b0 a 0 b - a 0 b2

and A 2 -A 0 = az b 0 + a2 bI + az bz -a0 b0 -a0 bI -a0 b

Thu* AL = A - A 0 . Similarly, it can be shown that AQ=A 0 - 2AI +A .

Now, ALBL = a2 bz + a0 b0 - a 0 b2 - a2 b. If these four treatment

combinations are substituted in the equation

ab. = I+ A + B. + AB + AB2+zj
1a j J i+j

it is easily dernon_•trated that

L L AB +AB 1 -ZAB ýZAB 2+ AB z- AB
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n
The p system

The following presentation is a straightforward generalization of the

2n and 3 n systems. The generalization from the 3 n system to the

pn system, where p is a prime number, can be seen fairly easily,

without introducing proofs. The proofs arc bascd on the properties of

Galois fields which will be given later.

Repre'.ent the treatment combination by numbers xI x2 ... x,

where x. is the level uo the i factor in the particular combination.

The numbers x. take on valucs from 0 to (p-1). All the numbers arcI

reduced modulo p, that is, a number greater than (p-l) is replaced by

nn
the remainder after division by p. The (pn- 1) aegrees of freedom

among the pn treatment combinations may be partitioned into

(pn-1)/(p-1} sets of (p-i) degrees of freedom. Each set of (p-1)

degrees of frccdoin is given by the contrasts among the p sets of ,

treatrn.m L comb-.nations specified by the following p equations:

a x1I + a I ... + an x n 0

al x +a. x +" +an (roodp)

a1 x + a x +... +a x (p-I1 22n n

The a. s must be positive irtegers between 0 and (p-1), not all

c;ual to zero and for uniqueness the coefficient of the first a.. that is

not zero equals unity.

Two sets of (p-1) degrees of freedom resulting from equations with

left-hand sides Za : n and LPi x. will be orthogonal unless Pi =- kQ.

for each i. This can easily be seen because the two equations,
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a. x. = k
1 1 (mod p)

Epi = mxI

n-Z
will be saLisfied by p treatment combinations, if •3 is not equal to

a constant multiplier of a. .I

C1 G2 L
rhe symbol A B ... K n which corresponds to the equations

whose left-hand side is

C I xI + L 2x + ... + a nx

denotes a set of (p-1) degrees of freed'om, the power of the first letter

occurring being restricted to be unity.

Galois field theory

in order to obtain a procedure ±or investigating factors, each having

s 1,vels, where s = -, a knowledge of group theory is essential.

A set of s elements O, Ul, ..U . , u. is said to be a finiLe field of

order s if the following properties ho-ld:

(i) The set is closed under addition and multiplication, i. e. if u.1.

and u. belong to the set then so do u. + u. and u. u..
3 1 3 13j

(ii) Addition and multiplication are commutative, i. e.

u. +u.-u. +u. and u. u.= u.u.
I j 3 11• j j I

(iii) Addition and multiplication are associative, i.e.

ui 4 (uji + u.)- (ui+ u.j )+uk and (uiuj) uk .ui(u uk)

(iv) The distributiv- law holds, i. e.

u ('i ( +u' + , u. + u uk
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(v) There exists an identity element u0 , under addition, i. e.

u0 + u.--- u. for any j .3 3

(vi) There exists an identity element ul, under multiplication, i. e.

u1 u. = u. for any j.

(vii) For each element u. there exists a unique inverse with respect
I

tc addition, i, e.

ui + ui. = U0 *

(viii) For each element ui (: u0 ) there exists a unique inverse with

respect to multiplication,i. c.

ui ui, = uI

The finite field of p elements, where p is a prime number may be

represented by u = 0, u 1, U? = .. = p-1, in which addition

and multiplication are the ordinary arithmetic operations with the rule

that the numbers are to be reduced modulo p.

In general, a Galois field of pm elements is obtained as follows:

Let P(x) be a given polynomial in x of degree m with integral

coefficients; and let F(x) be any polynomial in x vvith integral

coefficients. Then F(x) may be expressed as

F(x) = f(x) + p. q(x) + P(x) Q(x)

here q(x) and Q(x) may be any polynomial in x with integral

coefficie'nt and

2 _*a * a 1---- f(x) = a 0 + alIx+ + a...2 + a m lx-1 I -

and the coefficients a 0 , aI, . .. , am. 1 belong to the set 0, 1, Z,... ,p-1.

This relationship may be written as
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F(x) = f(x) mod p, P(x)

and f(x) is said to be the residue of F(x) modulis p and P(x). It p

and P(x) are kept fixed then the f(x)'s form pm classes of functions.

It may be readily verified that when p is a prime number and P(x) is

irreducible modulo p. that is, P(x) c~nnot be expressed in the form

P(x) = PI(x) Pz(x) + p. P 3 (x)

then the classes defined by the f(x)1 s make up a field.

The finite field formed by the pm classes of residues is called a

Galois field of order pm and is denoted by GF(pm). The pm classes

are the same, regardless of the choice of P(x), subject to the

restrictions imposed above, and the ficld GF(pm), always exists if p

is a prime and m a positive integer. The classes of residues can be

represented by the different possible functions f(x) and may also be

denoted by u 0 , ul, u 2 , .... u_ 1 where s pm

To illustrate, we shall obtain the Galois field of 3Z elements. An

irreducible polyno-nial modulo 3 is P(x) = 1 + xz. Now consider the

possible functions f(x). These are of the form a + a1 x where an and

a1 are elements of the set 0, 1 and Z. Hence the elements of the field

are: u 0 = 0, uI = 1, uZ Z, u3 = x, u 4 = Zx, u5 = 1 + x, u6 = 1 + Zx,

u17 = Z + x, u18 = 2 + Zx. There is a further theorem that all the elements

or marks of the field except the zero element u0 can be represented as

the powers of an element known as a primitive mark. It is readily

verified that y = 1 + x is a primitive mark. For
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Iiy = 1x
y 1 + Zx x Zx (since P(x) 1 + x = 0)

3 = 2
y Zx + Zx =x+ + 2(1+x ) 1+ Zx

4 2= 2 , 2=
y 4x x = rl+ =2

5
y =Z+Zx

y = Z+2 + Zx+ 4 x+ 2(1 + x) = 4x=. -

7 2 2
y 7 x +x x+ Z+(lI+x ) Z+x

8y = 4- 1

Both the representations of the elements of the field are important in

that the representation in terms of x is used for addition and the

representation in terms of y for multiplication.

An irreducible polynomial P(x), a primitive mark and the addition

and multiplication tables for GF(Z ), GF(Z3 ) and GF(3 ) are now

presented.
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TABLE 6

THE GALOIS FIELD, GF(Z )

2
P(x) = 1 + x+ x , Primitive mark = x.

Addition Multiplication

0 1 Z 3 0 1 2 3

A 1 Z 3 0 0 0 0 0

I 0 " 2 1 1 2 3

20 1 2 3 1

3 0 3 2

TABLE 7

THE GALOIS FIELD, GF(Z )

P(x) = 1 + x + x3, Primitive mark = x

Addition Multiplication

0 1 2 3 4 5 7 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7 0 0 0 0 0 0 0 0 0

1 0 3 Z 5 4 7 6 1 1 2 3 4 5 6 7

Z 0 1 6 7 4 5 Z 4 6 5 7 1 3

3 0 7 6 5 4 3 5 1 Z 7 4

4 0 1 2 3 4 7 3 Z 6

5 0 3 2 5 6 4 1

6 0 1 6 3 5

7 0 7 2
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TABLE 8

THE GALOIS FIELD, GF(3 )

P(x) = 1 + x Primitive mark= 1 + x

Addition Multiplication

0 1 2 3 4 5 6 7 8 0 1 Z 3 4 5 6 7 8

0 0 1 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0

2 0 4 5 3 7 8 6 1 1 2 3 4 5 6 7 8

1 15 3 48 67 Z 16 87 35 4

3 6 7 8 0 1 2 3 2 5 8 1 4 7

4 8 6 1 2 0 6 1 7 2 3

7 2 0 1 3 4 6 Z

6 3 4 5 6 2 8 5

7 5 3 7 31

8 4 8 6

The use of these fields in examining the s = (pm)n factorial system

is eicactly analogous to the use of 0, 1, 2, ... p-i for the pn factorial

system. The treatment combinatious may be denoted by (xI, .. , x)

where each x. can take one of the values 0, 1, 2, ... , s-1. The

(sn-l)/(s-1) sets of (s-1) degrees of freedom, which can be obtained by

partitioning the (sn-1) degrees of freedom into main effects and

interactions, are orthogonal, and the responses may be expressed in

terms of the mean, effects and interactions. The only complication is

that the numbers used are mnarks of the Galois field, addition and

multiplication being defined within the field.
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C. Confounding in Factorial Experiments

The p Lfo&iaace of a comparative experiment requires definition of

experimental units and the precision of conclusions depends on the

variation among the units, in addition to other things. The greater the

variation among units the higher the error and the lower the precision.

To combat this, it is advantageous to group the units into what are

usually called blocks of u,.,nits _no to design the experiment so that only the

variation among units within blocks enters the standard error of

estimates. The smaller the block size the more uniform the units in the

block will tend to be. It is therefore desirable "Lo have some means of

reducing the size of the block, i. e. the number of units in each block,

and thus increase precision. For this purpose the device of confounding

has been found very useful.

Consider a simple situation of three factors, A, B and C each at

two levels, the eff cts and interactions being defined as it, Table 9

(apart from the conventional namerical divisor).

Suppose that the eight treatment combinations are arranged in two

blocks according to their sign in the ABC interaction. The two blocks

would then contain the following treatment combinations-

Block 1 Block Z

(1) a

ab b

ac c

bc abc
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TABLE 9

EFFECTS AND INTERACTIONS OF THE 23 EXPERIMENT

(1) a b ab c ac bc abc

A -i 1 -1 1 -1 1 -1 1

B -1 -1 1 1 -1 -1 1 1

AB 1 -1 -1 1 1 -1 -1 1

C .- -1 -1 -1 1 1 1 1

AC 1 -1 1 -1 -1 1 -1 1

BC 1 1 -1 -1 -1 -1 1 1

ABC -1 1 1 -1 1 -1 -1 1

The quantity used to estimrate A is orthogonal to blocks in that it is
1

given by i(-(I) + a - b + ab - c + ac - bc + abc) and of the four treat-

ment combinations entering the estimate positively two are in each block,

and likewise fox the four treatment combinations entering negatively.

The estimate will then contain none of the additive block effects. The

same is true of the other main-effects and the two-factor interactions.

The three-factor interaction is estimated by

- (Ij + a + b - ab + c - ac - bc + abcl and this estimate measures not

only Lhe true ABC interaction but also the block difference (block 2

minus block 1). It is not possible to separate the true interaction from

the block difference and the interaction and block difference are said to

be completely confounded with each other. Thus the three-factor

interaction cannot be estimated. In many situations it is known that the
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high order interactions are trivial and therefore can be used as blocking

factors.

The spt of treatment combinations in the block of a confounded

experiment which includes the control treatment is called the intrablock

subgroup.

If none of the interactions can be considered trivial and smaller

blocks are desired, the experiment can be replicated several times with

a different effect or interaction confounded with blocks in each replicate.

For example, in the 23 experiment we might replicate the experiment

four times confounding ABC with blocks in the first replicate, AB with

blocks in the second replicate, AC with blocks in the third replicate

and BC wiLh blocks in the fourth replicate. Thus each interaction may

be estimated in the three replicates in which it is unconfounded. This

type of confounding is known as partial confounding.

The rule of the generalized interaction for Zn experiments is thdi if

effccts or interacti-ns represented by X and Y are confounded, then so

is XY, obtained by multiplying the symbols together equating any letter

whi:'i is squared to unity. The rule of the generalized interaction for the

3n system is that if pairs of degrees of freedom corresponding to X and

Y are completely confounded, then so are the pairs of degrees of freedom

corresponding to XY and XY2 where any letter cubed is equated to

unity. By adopting the rule that in any symbol the power of the first

letter should be unity a complete and unique specification of all effects

and interactions is achieved.

An example of the use of this symbolism is the following. Suppose a
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33 experiment is to be arranged in blocks of three. In any system of

confounding four pairs of degrees of freedom must be confounded with

blocks. For example, if AB C and AC are confounded, so is

2 2 2 23 2 2 4 4AB C x AC =A B C = A B = A B4= AB

and AB 2 C x AC 2ACZ= A3BC5 = B C= B4 4= BC.

The composition of the blocks is easily obtained from the definition

of the effects and interactic •s. In the above example there are nine

blocks given by the solutions of the equations

X + 2x 2 +x 3 = i (mod 34

x I + 2x 3 = j (mod3)

where i and j each take on the values 0, 1 and 2.

The rule of the generalized interaction for the pn experiment is that,

if effects or interactions denoted by X and Y are completely confounded

with blocks, then so are the (p-1) sets of (p-1) degrees of freedom

denoted by XY, XY2 , XYPl , where any letter raised to the pth

powe. is to be replaced by unity and the resultant symbol is to be raised

to such power as makes the first letter in it have a power of unity. This

may be proved as follows: Let X correspond to the equations

CL XI a2 2+ .. +an n= 0, = 1,= = (p-l1) (mod p)

and Y to the equations

Pi 'x + P 2x 2 + "'" + PnXn = O,' = , = (p-1) (mod p).

Because X and Y are confounded completely with blocks, the treatment

combinatiors of any one block satisfy the equations
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nIx 1 + az z+ ta xn = i (mod p)

PX1 + P 2 x 2 +"' + PnnX = j (modp)

where i and j are each one of the numbers O, 1, ... , (p-1). For

these treatment combinations the equatio.is may be combined to give

(al + X•l)xl + (aZ + APZ}X" + ...+ (an + Xln)xn = i + Xj (mod p)

where X can take on any value from I to (p-i) and the coefficients on

both sides of the equation must be reduced modulo p. This equation

X
corresponds tn the symbol XY . Thus, the treatment combinations of

any block take on a constant value for any one ý f the equations corre-
vA

sponding to XY where X is any value from 1 to (p-l). The effect or

interaction XY is therefore confounded with blocks for these values of

A.

D. Fractional Replication

A complete factorial experiment investigating all possible combinations

of all the levels of the different factors will involre a large number of

trials when the number of factors is five or more. When the number of

factors is large the number of trials required may even become

prohibitive. One is therefore led to consider the economy of space and

material which will be attained by using only a fraction of the possible

number of treatment combinations at the expense of losing some

information inherent in a complete replicate. The general process by

which information can be obtained from less than a full replicate of a

factorial experiment is known as fractional replication.

Suppose that three factors, A, B and C, each having two levels are
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under investigation and it is known that these factors dn not interact.

The relation bet-ween the true responses and the effects and interactions

can be presented in tabular form as follows:

TABLE 10

RELATION BETWEEN RESPONSES AND EFFECTS AND INTERACTIONS

IN A ?3 EXPERIMENT

1 1 11111

S A B •AB !C !AC !BC !ABC

(1) + - - + + + -

a + + + +

b + - + - - + - +

ab + + + + ....

c + - - + + - +

ac + + - - + + -

be + - + + " +

abc + + + + + + + +

Suppose that only the four treatmenit combinations that enter the ABC

interaction negatively are considered; namely (1), ab, ac and bc. It

is clear from the table that it is impossible to separate the mean ýt from

the ABC interaction. Similarly the A effect cannot be separated from

the BC interaction, the B effect cainot be separated from the AC

interaction and the C effect cannoL be separated from the AB inter-

action. The estimating equations for this plan are:
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I I

ABC = C(l)+ab+ac+b

(A-BC) = (1) + ab+ ac - bcJ

- (B - AC) = - (1) + ab - ac + bcJ

C -AB C-) -ab+ ac + bc._7

With only the four trials, A is completely confounded or aliased

with EC, B with AC, I with AB and R. with ABC.

If the factors do not interact all the interactions may be neglected

and the estimating equations can then be used to estimate the mean and

the three main effects, and these estimates are uncorrelated.

The treatments chosen for the 112 replicate were selected as those

which entered the ABC interaction negatively. The selection could have

been those which entered the ABC interaction positively. For most

purposes, it does not matter which of the two halves of the experiment is

chosen.

If by convention, R is denoted by I, the confounding relation may be

expressed as

I = ABC •

This relation is known as the defining contrast or identity relationship

where the equal sign is used to denote "completely confounded with".

The remaining three confounding relations may be written as

A = BC

B = AC

C = AB
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These relations may be obtained from the identity relationship by

multiplying both sides by an effect of interest with the rule that any

letter which is squared is to be replaced by unity. Thus I = ABC when

multiplied by A gives

2
A = BC = BC

It should be noted that the I/2 replicate of the 23 experiment given

by the identity relationship I = ABC consists of the same treatment

combinations as one of the blocks of a 23 experiment in two blocks of

four plots each where ABC is confounded with blocks.

The identity relationship of a quarter replicate of a 2 n experiment

is of the form

I = X = Y = XY

where X, Y and XY are higher order interactions and XY is the

generalized int-raction of X and Y.

If, for a 1/3 replicate of the 33 experiment, the identity relation-

ship is given by

I = ABC

the following confounding relations may be generated:

22zA = AB C = BC

B = AB zC = AC

C = ABCz = AB

2 2 2AB = AC = BC
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m ,r pn
In geneial a 1 ,!p replicate of a p factorial experiment may be

specified by an identity relationship of the form

I X:= Y= XY= XY2 = .... XYp-1 =Z - XZ XZ=...= Xz 1

YZ = YZ = = -.yrsz Cr, s = 1, ., (p-l)7

= etc.

'J)r there are t independent contrasts X, Y, Z, etc.

For a more detailed iiscussion of factorial experiments one may

refer to the texts by Kempthorne (1952) and Davies (1954).
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IV. ORTHOGONAL MAIN-EFFECT PLANS

The experimental plans which are developed in this chapter and

subsequenitly presented in the catalogue are called orthogonal main-effect

plans as they permit the estimation of all main effects without correlation,

when all interactions are negligible.

The most commonly used factorial experiments involve factors which

all occur at the same number of levels. These experiments are known

as snymmetrical factorial cxperiments. A good deal is already known

about the construction of orthogonal main-effect plans for symmetrical

fac.torial experiments although a comprehensive catalogue of such plans

has never been published. There are a great many experimental

situations which involve factors that do not all occur at the aame number

of levels. These experiments are known as asymmetrical factorial

experiments. Heretofore the standard technique for constructing

orthogonal main-effect plans for asymmetrical factorial experiments has

been to combine two or more orthogonal main-effect plans for different

symmetrical experiments. Hence in order to construct an orthogonal
•4 Z3

main-effect plan for the 3 x experiment one would combine the plan

for the 34 experiment in nine trials with the plan for the 23 experi-

ment in four trials to obtain the required plan in thirty-six trials. This

,rocedure often requires more trials than the experimenter can afford to

make.

The orthogonal main-effect plans developed in this chapter for both

symmetrical and asymmetrical factcrial experiments require the least

number of trials that has yet been attained for such plans. For mzny
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experiments the suggested plans are so highly fractionated that there nre

fev; if any degrees of freedom available for the estimation of experimental

error. In such situations one must use an estimate of experimental error

which is (i) known from previous experience, (ii) derived from some of

the degrees of freedom available for estimating main-effects which prior

knowledge indicates are negligible ,r (iii) approximat-d by a procedurc

which utilizes a graph and is known as the half-normal plot technique of

interpreting factorial experiments.

The plans consist of th reatment combinations which permit

uncorrelated main effect estimatcs. The treatment combinations are

denoted by the level at which each factor occurs. Thus the treatment

combination 0112 in an experiment on four factors is that combination

for which the first factor occurs at its first level, the second and third

factors occur at their second levels and the third factor occurs at ;s

third level,

A. Weighing Plans

The problem of estimating the weights of small objects placed on a

balance scale was first considered by Yates (1935). The weighing

problem is concerned with the development of plans for estimating the

effects of two-level factors with as few trials as possible. Since it can

-e assumed that the weight of a set of objects is the sum of the weights of

the individual objccts, all interactions may be piesumed to be absent.

Hotelling (1944) constructed optimum (in the sense of minimum variance)

plans for estimating the weights of (N-i) objects with N weighings on

a chemical balance scale. He proved that a necessary and sufficient
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condition for attaining an optimum weighing plan is that the design

matrix, X say, be a Hadamard matrix, which is a matrix consisting of

I Is and -iIs such that X'X = diagonal (N, N, .... ,N) where N is the

number of xeighings. Paley (1933) proved that a sUfficient condition that

a Hadamard matrix of site N exist is N = 0 (mod 4), with the exception

of N = 2 which is a trivial case.

Plackett and Burman (1946) provided what is effectively a complete

solution of the weighing r oblem when the estimates of the weights are

required to be uaicorrelated. Most of the plans which they developed can

be generated by a cyclic shifting of the elements of one treatment

combination successively (N-zr" times and then adding the control treat-

ment. When the number of trials N = 0 (mod 4) is not of the form

N= 2 n the orthogonal main-effect plans given in the catalogue have been

generated by cyclically shifting the elements of the treatment combi-

nations presented by Plackett and Burman.

[ Plans for Symmetrical Factorial Experiments

Orthogonal main-effect plans can be constructed easily for

symmetrical factorial experiments involving (sn - 1)/(s- 1 ) factors, each

"having s levels, with sn treatment combinations, where s =pm and

p is a prime number. The (s-1)1(s-l) factors can be represented by

"n factors each having s(= p ) levels and all their generalized inter-

"actions. Hence one need only choose the treatment combinations from a

"complete sn factorial plan and assign one of the (sn-1l)/(s-1) factors

to each of the factors and interactions of the s plan.

nLet the n factors of thc s factorLal plan be represented by
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XI X 21.. , Xn and their generalized interactions by

k X1 + kX,+... .+ k X where ki(i = 1,2,... n) can take on any valuemm kiX11 + 1z..+ n n• .

of the Galois field GF(pm) and it is understood that the coefficient of

the first factor appearing in an interaction is unity. The notation

adopted here for the generalized interac~ion-, diffej s from the standard

notation for interactions as given, for example by Kempthorne (1952), in

order to facilitate the presentation which follows later.

The procedure for con.itructing orthogonal main-effect plans will be

illustrated with a plan for four factors A, B, C and D, each having

three levels with nine treatment combinations. in this example s = 3,

n = 2 and (sn-l)/(s-1 ) = 4. The four factors can be represented by two

factsrb X1 and X of the 3 factorial experiment and their general-

ized interactions X + X, and X + ZX2. The treatment combinations

which comprise the orthogonal main-effect plan are

0 0 0 0
0 1 1 2
0 2 2 1
1 0 1 1
1 1 2 0
1 2 0 2
Z 0 2 2
2 1 0 1
2 2 1 0

The interactions which are members of the defining contrast (identity

relationship) may be determined by choosing those interactions whose X

representation equals 0 (rood 3). The generators of the interactions in

defining contrast for the example given above are ABC Z and ACD,

since the X representation of ABC Z is X 1 + X 2 + 2(X I + XZ) = 0

(rood 3) and of ACD = X1 + (XI + XZ) + (XI + 2XZ) = 0 (rood 3).

011

022|i1011
112

=1=0



Some plans which -nay be constructed by this method are given in

Table 11.

TABLE i I

INDEX OF SOME MAIN-EFFECT PLANS

Number Maximum Number Number of
of levels of factors observations

z 3 4

z 7 8

2 15 16

2 31 32

2 63 64

3 4 9

3 13 27

3 40 81

4 5 16

4 21 64

5 6 Z5

7 8 49

8 9 64

9 10 81

The orthogonal main-effect plans with sn treatment combinations

which accommodate up to (sn-l)/(s-1) factors can be augmented to

yield orthogonal main-effect plans with 2 sn treatment combinations.
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The augmented plans can accommodate up to tZ(sn-_)I(s-1) - 1.

factors, each having s :- p levels, In order to illustrate the theory

underlying the augnie'tation procedure some preliminary lemmas are

now developed.

Let UOul.... us_, represent the elements of the Galois field

m zGF.pm) and let u, u g . u represent the squares of the elements

of GF(pm). The set of squared elements of GF(pm) will be denoted by

F GF (pm). it is easily ve- Ified that apart from the 0 element, the set

GF 2 (pmr) forms a cyclic Abelian group under multiplication. It follows

from the cyclic property that (i) when p = 2, GF (p m) contains each of

"the elements of GF(pm) and (ii) when p is an odd prime, the elements

of GF (pm) comprise a subset of (s + 1)/Z distinct elements of

GF(pm), where one element occurs once and (s-l)/2 elements are

duplicated,

Consider one of the factors Xi in a main-effect plan in which each

n-1 nXi has s levels each occurring s times in a total of s treatment

combinations. Let X: be a pseudo-factor obtained by squaring the

levels of X. The following lemmas can now be presented:

Lemma I, When p is an odd prime, X. + k X (k an element of

GF(pm)) contains (s + 1)/Z distinct levels, one level occurring sn-1.

times and (s - 1)/Z levels occurring Zsn-I times in sn treatinent

combinations.

Lemma 2: When p = Z, X contains e- .. if the s levels sn-I times.i

Lemma 3: When p = 2, X. + kXi x 14 0 contains s/2 distinct levels

each occurring 2 s times.
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Lemma 3 can be proved as follows. Let x. range over the elements of
I

GF(p ) which represent the s levels of Xi., As x. ranges over the

elements of the field so does x. + k where k is an element of -F(pm).I

Also if xi + k = x. (mod 2) then x. + k = x. (mod 2). Hence

x(xi+ k) = x. x. and x.(x. + k) = xix. Thus whatever values of
L L 11 33 13f

x.(x. + k) are achieved they are achieved for at least two values of x.

It will now be shtwn that the values of x,(xi + k) are achieved for

exactly two values of x.i. I et y be the generator of the field and letaI

x. = va and k Thus x.(x. + k) = y(ya + y).
I .

Suppose that

,L (y ya + yP) P y 'Yy + yP)

where

ya i y ' and yo+yp4y

Hence

(ya + y Z + (ya + yy )y =0

(ya + y) Y(ya + yY + y P) = 0

This implies that either ya + y = 0 and therefore y = yV which is a

contradiction or that yc + y' + yP = 0 and therefore ya + yP = yV which

.s a contradiction. Hence the values of xi(xi + k) are achieved for

exactly two values of xi and Lemma 3 is proved.

Lemnma 4". The factor represented by X2 + k. X. + Z k.X. , where at

n-Ileast one k. i 0, contains each of the s levels s times.
3
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2Lemma 5: The levels of Xi + kI X. + k X. which occur in a plan with

the u level of a X + a where kl, k,, a 1 and a 2 are elements

of GF(p m) and a 2 1 0 are given by the values of

xi +kx +k 2 x.+c(alxi+a x.) - cut where k2 + ca 2 = 0 and x.

rangres over the elements of GFPm

Proof: When a 1 Xi + a 2 Xj takes on the ut level then a lxi + a2 xj = ut

and thus

x =x. (Ut - a 1 xi )Iez.

Hence the levels of the factor X+ X + k X which occur with thei 1 lXi + zj wihocrwt h

lev -1 ut of alxi + a X can be represented by
ZjZ

x 2 +k 1 x + x. = , 4-klxi+kZ(u-alx.)Ia

=x2 + (kI - k a!/a )xi + (kZ/a 2 )ut

Since k2 t caZ = 0. then c = -k 2 /az.

Thus

x z+ (kI - k ai/a )x. + (k?/a )ut = x1 + kkx. +I- + c~al+ ax ocut,

and the lemma is proved.

Two factors XI and Xj are said to be orthogonal to each other if

each level of X. occurs the same number of times with every level of

Xi. Two factors Xi and Xj are said to be semi-orthogonal to each

other if (i) for p an odd prime, one level of X. occurs sn'z times

and (s-l)/2 levels of X. each occur Zsn- 2 times with each level of

X. and (ii) for p - 2, b/Z levels of X. each occur Zsni2 times with. j

each level of X.
1
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It follows from Lenmmas 1, 3, and 5 that when p is an odd prime

or when kI - k a l/a 2 1 0, thcx aI Xi + a Xj is semi-orthogonal to

X2 4 k X + k X.. It follows from Lernmas 2 and 5 that when p = Z
i 3

and k1 - k a /az = 0 then a Xi + a X. is orthogonal to

xi + kX. + kkX. Employing an argument similar to that used in

Lemma 5 it can be deduced that kX + kIX.i +X. and kX + k2 X. + X.i 3

are orthogonal to each other when k1 ý k .

Lemma 5 can be generalized to include more than two factors as

stated in Lemma 5a.

Lemma 5a: The ieveis of X2 4 k.X. + Z k. X. which occur in a plan with
i 1 1 jji J

the ut level of a. X. + _ a. X. are given by the values of
11 ji J J

x. k.x. + 2; k.x. + c(aix + Z a.x.)- cu
x 1 1 3i 3 . ji t

where k. + ca.= 0 for all j i i. If the a. and the k. are not o -:uch a
I 3 3 3

form that k. + ca. = 0 for all j 4 i and some c contained in GF(pm)
3 3

then the two factors are orthogonal.

Lemma 6: When p is a prime the complements in GF(p ) to the

el:-.nntsin F p ) are the set of elements in GF (pm) each multi-

plied by an element of GF(pm) which is not an element of GFz (pro).

Hf the set .)f elements in GF 2 (pm, - .- their set of cnmplements are

taken toge-.her in one set the elements of GF(pm) are obtained.

Proof: From abstract group theory (see Birkhoff and MacLane (1953))

we employ a lenmma which states that two right cosets of a subgroup are

either identical or v.itho-it common elements. Now the elements of
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Z'i

GF Z(p ) form an Abelian subgroup of the elements of GF(pm). Hence

umltiplying each element oi GF (pmT by an element of GF(pn) which

is not an element of GF (pm) yields the complementary set to GF (pm)

It is clear from Lenima Z that when p) = 2 the set complementary to

GF (p ) is the null set.,

We can now present

' ,;2o-eni 1: There exists a main-effect platn for CZ(sn-l)/(s-I) _1]

factors, each at s = pm evels, with 2s n treatment combinations.

Proof: Tfn order to facilitate the presentation of the proof of Theorem 1,

let n = 2. First construct an orthogonal main effect plan for (s -I,/(s-l)

factors each at s levels in s2 trials, represented by the two factors

X 1 and X and their generalized interactions XI + X2, X 1 + zX 2 , ... #XI

+ (s-l)X . To these add t(s -1)/(s-l) - 1.7 factors representerd by
2, . 2 + 2 -r 2 1 (s

X ~ ~ 1 &- - +X + . sI 1  + X,. TheseX1 X2 i- X! - o X_ + 2X! + Xz1 .. I ' (11X 1 .

[ z(sn-l)/(s-11 - 1 7 factors in s'Z observations repre-ent the first half

of the main-effect plan.

Note from the precýe-ing lemmas that when p is a prime number,

X, +aX 2 and X 2 + kiX + X2 ae semi-orthogona] and also that XA 21 i 1 2

and X2 + KXi I X are semi-orthogonal for all a. and k. in GF(pm)
I I z

except a. = 0. All other pairs of factors are clearly orthogonal. If

a= and (ki - a /ai) = 0, then X 1 + aXM and ,2.2 X +X are

orthog oi-al.

The second half of the plan is chosen so that the pairs of factors which

are orthogonal in the first half are also orthogonal in the second half and

pairs of factorb vwhich are semi-orthogonal in the first half are setni-
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orthogonal in a complementary manner in the second half. The factors in

the second half which correspond to the factors of the first half can be

denoted by

"XI,X2,XI+X2 +bl, X +ZXz+bz#,...,X +(S-I)X2 +b , kX +X ,

kX iklX +X.,+ClkX +k x X +c. .. ,kX i-k X +X +CX. .+kX1 (s-I) ! + + Cs-i

where the co,-fficients bl,b 2 , .... bs_1 , k, k Ikz, k s-lc 2.,c cs

are to be determined.
z

From Lemrma 5, it is seen that the levels of X + X which occur
1 2

with the ut level of X. are given by the values of x + ut where x

takes on the values of the elements of GF(p m). Without loss of

generality we may let ut = u 0 = 0. When p is an odd prime, the values

of kX 1 +Xz, where k is an element of GF(pm) but not an element of

GF2 (pm), which occur with the u. = 0 level of X are given by the

2
values of k x As shown in Lexina , kx! complements xL .

Thus, when p is an odd prime k can take on the value of any

element in GF(p ) which is not an element of GFZ(Pm). If p = 2 it

is cle;4r from Lemma 2 that k = i.

A method for determining the constants b1 , bz, ... bs-l,

ki, kz,..., ks-1, il, c 2 ",...,c Csl, when s =pm and p is an odd

prime is now presented. In order that the levels of kX 1 + X which1 2

ocur with the 0 level of X + aiX 2 + bi be thc complements of the

level- of X+ + which occur with the 0 levels of X + aX 2 , b.

must be such that the values which kxZ - (1/a - bi/a. takes when

x1 ranges over the field GF(p m) complements the values which

2 P2a xi t k s. N w xz -( /S takes. Now i)x consists of one element of
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GF(pm) occurring oace and (s-l)/2 elements occurring twice. Let the7

unique element of GF(p m) be u 1 . Then x - (1/ai) x1 = u 1 must have

only one solution as x1 ranges over the elements of GF(pm). Thus

2+4- 2 2r1/a +4u= 0 andhence 4u =-I/a. Since kxi -(1/a )Xl-bi/a.

must complement x, (1/ai)x1 the equation

kx 2 - (1/ai)xI - bi/a. = u

1 i i 1

must also have only one solution.

Therefore

-I/a + 4k(b/a + u) = O.

2Substituting 4 a - I/a. in this equation anct solving for bi we get

bi (k - l)/4ka.. (1)

2
To find the levels of X + d X1 + X 2 which occur with the 0 levels

of X, note that there exists an element of GF(pm), u 2 say, such that

x + d x 1 = u2 has only one solution.

Thus d+ 4u + = 0 and hence 4 ua= - d.. In order that the levels of-- j 1

kX + k X + X +c. which occur with the 0 levels of X2 complementI i 1 Z2i2
those given by xlz + diXl, then kxl2 + k xI + c. = u 2 must have only one

solution. Substituting 4 u 2 = - d in this equation and solving for c. we
i1

C k2/4k - d.2/4. (2)
= i /

To find the levels of X + d X + 2 which occur with the 0 levels

of X + aiX2 note that there exists an element of GF(pm), u 3 say,such

that xz f (d. - 1/a.)x = u3 has only one solution.
I i x =u
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Thus

(d. - 1/a )2 + 4u3 = 0 and 4u =3-(di - I/ai2

Since kx2 + (k1 - )/a )x1 + (ci - bh/ai) must complement

x + (d. - I/ai)x1 , the equation

kxt •kI - l1ai)x1 + (ci - bi/ai) =

must also have only o-e solution as x1 ranges over the elements of

GF(pm ). Therefore

(k. - 1ai) 4k [cc. bi iai) - u 3 1 = .

v2

Substituting 4u 3 = - (di - I/a) z and equations (1) and (Z) into this

equation we get

k. = kd. . (3)

Hence equation (2) can be rewritten as

c.= dz (k-l)/4 (4)1 "

rhus k is determined by choosing an element of GF(pm) which is

not ;n element of GF (pm). By letting ai = 1, 2, ... , s-i we can

determine bl, b2 .... , b s 1 from equation (1). Then setting

d.= 1, ?,..., s-I we determine kV kI ..... k from equation (3)

and c1 , c,, .. c.. from equation (4).

The procedure employed above cinnot be applied when p = Z since

X + cxI consists of s/2 elements of GF(Zm), each occurring twice.

Thus there exists no element u such that x1 + cx1 = u must have only

one solutiin.
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We deduce from Lemm, 2 that when p = 2, then k 1. In ofder

that the levels of X - x which occur with the 0 levels of1 2

X. - a. X + b. (a. = 1, Z, 3, . . . s-1) compienent the levels of

X 2 + which occur with the 0 levels of X1 + a X2 then. the, levels1 2
2

given by x- (I/ai)x - b.ia. must complement the levclb given by
a

x - ( 1/a )x when xI ranges over GF(Zm). It is easily verified that

b can be any one of the Zr elements of GF(Zm) which are not

given by x: - (1/ai).,

12In order thaL the levels of XI I k X Xz + ci which occur with the
1 Z d.1+X hchocrwt

0 levels of X comple-menc the levels of X1+ dX + which occur with

the 0 levels of X then the values given by xI + k x 1 + ci must comple-
2'

ment the values given by x 1 , d x,. It caa be shown that k. = d. and c.i I I

can be any one of the 2 elements of GF(Z M) which are not given by

the values of x d x
2

By finding the values of X + k X1 + x + c. which occur with the 0

levels of XI + a iX + b. and which c3mplement the v.m.ia's of1 Z
X I diX1I + that occur with the 0 levels of XI + aiX2,asetof bI

ar d c. which satisfy all the requirements to have the second half of the plan1

complement the first half of the plan can be determined.

When n > 2 the same procedures will yield the desired plans if

L-mma 5a is Ltilized in place of Lernina 5. Thus the theorem is pruved.

The orthogonal main-cffect plans for EL(sn-l)/(s-l) - I] factors
m s

each at s = p levels with sn treatment combinations which are

included in the catalogue are the following- 3 in 18, 3Z5 in 54, 49 in 32,

511 in 50. Bose and BuAh (1952) have constructed the plans for 3 in 18
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and 49 in 32 by other procedures and have shown that CZ(sn-1)I(s-l)-1J

is the maximum number o- factors, each at s levels, that can be

accommodated in an orthc )nal main-effect plan with Z sn treatment

combination s.

C. Condition of Proportional Frequencies

In the complete factorial experiment the levels of a factor occur

equally frequently with each of the levels of any other factor. This condi-

tion is sufficient to allow ancorrelated estimates of all effects -ad inter-

actions. This condition is also sufficient to allow uncorrelated estimates

of the main effects in a main-effect plan. Hovxcrer for main-effect plans

tihe condition of equal frequencies is not a necessary one. We will show

that a necessary and sufficient condition that the estimates of the main

effects of any two factors in a main-effect plan be uncorrelated i' that the

levels of one factor occur With each of the 'evels of the other factor with

proportional frequencies. The condition of proportional frequencies, will

be deduced for a main-effect plan on two factors, A and B, occurring at

r and s levels, respectively. This w~s stated first, it is believed, by

Plackett (1946) but his proof was found to be obscure. Therefore a

related proof is presented below.

If the plan is orthogonal then the estimate of any component of factor

A is orthogonal with the estimate of any component of factor B. Let the

components of factor A be represented by (r-1) orthogonal contrasts,

and the components of factor B by (s-1) orthogonal contrasts. Denote

by Au and Bv the u-th orthogonal contrast among the r levels of

factor A and the v-th orthogonal contrast among the s levels cf
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factor B, respectively. Denote by alu, azu, ... , aru the coefficients

of Au, and by b I, b .. , bsv the coefficients of Bv. The model

which exhibits these orthogonal contrasts is

r-l s-1
y.j =i + ,. a. A + Z b. B + ei.;= 0, 1, Z ... , (r-1);

1 -l 1u 1u v-l jv V

j = 0, 1, Z, ... , (s-i), where yij is tie observed yield of 'he treatment

combination for which factor A occurs at the i level are factor B

occurs at the j level, 4± is the overall mean and e.. is the experi-

mental error associated with the observed yield yij .

Let n = the number of trials in the plan,

n. = the number of times the i levei of factor A occurs
in t,,e plan,

n = the number of times the j level of factor B occurs"J i in the plan,

n.. = the number of times the i level of factor A occu.
U ..with the j level of factor B.

Hence .n... = n. , n.. = n. and Z, n.. = n.
ij3 1. . .3 .j . 1

Theorem Z: A necessary and sufficient condition that the estimates of the

components of two factors A and B, in a main-effect plan, be orthogonal

to each other and also to the mean ýL is that n.. = n. n ./n.iJ 1. 3

Proof: In order that the estimates of the components of factors A and B

e orthogonal to each other and also to the nean, the design matrix X

must b&c such tha* XIX is a diagonal matrix. With the model

r-1 s-1
Yij =+ Z a. A + Z b. B + eij; i= 0, 1, , (r-1)

u=l Iuuv= - v 1 7

j = 0, 1, Z, ... (s-1), the following equations must hold in order that
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the design matrix be of the required form:

a a. n. = 0; u 1, 2, ... , (r-1) (5)

Sb n --0;v- 1, 2 ... , (s-i) (6)
i Jv •.J

Ea. a. •. = 0 u u, (7)
i

Z b. b.nb . = =3;v4v' (8)
j Jv *jV, . j

and Z a. b. n..=0;u=i, Z, ... ,(r-1);vvI, Z,..., (s-1). (9)
LU . v U

Equations (5), (6) and (9) can be expressed in matrix notation by

equations (10), (11) and (12):

AIN =r-1,l (10)

where Al is an (r-1) x r matrix of coefficients of Au

N' = (n nl... n(r) ), and 0 is ar. mrxn matrix of zeros;rN. 0. 1 ns-- 1 mn

where B1 is an (s-i) x s matrix of coefficients of Bv, and

N1  =fn n 1 .. . n (SI ; and
N ' I0 (s 1);an

A'NB = 0 r(12)

where N = (n..).
ii

Equations (7) and (8) art autumatically sausfJ,• zinc e the a. and the

b.jv are coefficients of the orthogonal contrasts. Thus we need only show

that a necessary and sufficient condition that AINB = 0 given
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Lhat. A rI r-l, ' and B'Ns =s is that n.. = n. r.n,
.s .

which expressed in matrix notation is N = N Nt /n.r. .s

To show that this condition is sufficient, assume that N= N N, Inr. . s

T!e:± AINB AIN N ! B/u =0 , since AN = r. and
r. .s r-is-1 r. r1

N'. BS. Is

To show that this condition is also necessary, assume that

AINB = 0 . Since n. = Z n.. and n. =Z nij, then N =NE
j i

and 1,11 N - ElN, where is an mxn matrix whose elements are
. s r mn

all unity. Let -' =A] . Since the columns of A are the

coefficients of (r-l) orthogonal contrasts, P must be non-singular.

$ Let Qý = Es:B~ Sincc the columns of B are the coefficients of

(s-1) or.hogonai contrasts, Q must be non-singular.

Now PINQ = . N [ BAl

= B 1 01 s 1

S. . •r. A N j 0r-1,1 0r-1, s _1

Thu- PNQ is of rank one. Since P and Q are both non-singular

matrices, N must have a rank of one.- Hence each row of N is a

rnultipie of the first row and each column is a multiple of the first column.

Therefore n../n. = n ./n or n.. = n. n ./n which can be expressed in1j 1. • 1 3 1. . 3

matrix notation as N = N N' /n.
r. . s

The theorem can esily be generalized to prove that a necessary and

sufficient condition that the estinates of the components of k factors in

a main-effect plan be pairwise orthogonal and also orthogonal to the mean
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Sis that the levels of each factor occur with the levels of any other

facLor with proportional frequencies. This generalization can be made by

showing that for any pair of factors the proportional frequency condition

if both necessary and sufficient to yield orthogonal estimates.

D. Plans for Asyrrinetrical Factorial Experiments

Tf the levels of each factor are arranged so that they occur with the

levels of any other !actor with proportional frequencies, it is possible to

derive new classes of orthogonal main-effect plans for asymmetrical

factorial experiments. One such class permits the estimation of all

main effects without correlation for an experinivnt involving t! factors

at sI levels, t 2 factors at s2 levels, up to tk factors at sk levels,

with sn trials, where sI is a prime or the power of a prime,

Sl > S2 > .'. > Sk and

kZ. t. < ns _l)/(sI I).

A method of constructing an orthogonal main-effect plan for the
ti tZ tk

sI x s X ... x sk experiment in s n trials involves collapsing

factors occurring at sI levels to fact.ors occurring at s. levelsI

(i = Z, 3, 4, ... , k) by utilizing a many-one correspondence of the set

f s I _l-;els to the set of s. levels. First construct an orthogonal

inain-effect plan for the symmetrical factorial experiment involving

(sn _i)/(sl l) facto s, each at sI levels, with sn trials, where s

is a prime or the power of a prime. Collapse the levels of t 2 of these

fact:)-s to s, levels, where s,. < sI, by making a many-one
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correspondence of the set of sI levels to the set of s2 levels.

Similarly collapse the levels of t 3 of the original factors to s3 levels,

where s 3 < s? < s,, and so on.

If for some i, sI - Fen, then a factor with sI levels can be

collapsed into (sl-l)/(si-l) factors each having si levels. Since there
eXI~t an m -l)/(s.-l) factors, each

exists an orthogonal main-effect plan for (sf
mi

at s. levels, with s.m treatment combinations, we can replace each of

the sI levels by one of the s = sm treatment combinations. To
i

illustrate this point consider a factor at sI= 4 levels. There exists an

orthogonal main-effect plan for three factors, each having two levels, in

four treatment combinations, namely: 0 0 0, 0 1 1, 1 0 1 and 1 1 0.

If we make the following correspondence:

Fo'u'r-level Two-level
factor factors

0 0 000

1� O1 1

2 101

3 1 110

the four-level factor is collapsed to three two-level factors.

If the (si-l) degrees of freedom for eiach of the t. factors at s.

levels are represented by (si-1) orthogonal contrasts among the s.

levels, the estimates of these contrasts for any factor will be uncorre-

lated w-ith the estimates of the contrasts for any other factor because the

correspondcnce scheme automatically guarantees proportional frequencies

of the levels of each factor.

An orthogonal r-iain-effect plan for the 2 factorial extierimnt
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with nine trials is now cotstructed to illustrate the technique of

collapsing levels. First construct an orthogonal main-effect plan fo

four factors, each having three levels with nine treatment combinations.
0000

1011

1202.

2022

2l10

2210

V Collapse each of the first two fa.ctors to two~-level factors using the

following correspondence scheme:

Three -level Two-level
factor factor

0 0 0

1 0 1

2 1 0 0

The resulting treatment combinations constitute an orthogonal main-32
effect plan for the 2 x 3experiment and are displayed below.

00 00 10 02

01 12 O0 22

00 21 01 01

10 11 00 10
11 20

Doubling the number of trials and doubling the number of levels of one

factor leads alsot o some new orthogonal main-effect plans. To

illustrate the construction procedure consider the 34 plan in 9

observations and repeat it, replacing the levels 0, 1 and 2 in one of
the factors by the levels 3, 4 and 5. This gives a 6 x 3 plan o n 18
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trials. The collapsing procedure will then give the 5 x 3 x Z"n2 plan,

2
n. -- 3, in 18 trials.Si~l I

T hie class of Qrt ,,- • "' n-e_`- -ff -c' t!anz f= s i S S x ' X t k

experiment with sn trials where s, > s, >. > s tricts the number
I k

of trials to be equal to sn where s is the lawrgest number of levels.

Thus, for example, one would require sixteen trials in order to construct

an orthogonal main-effect plan for the 4 x experiment using the

procedures suggested above. A second class of orthogonal main-effect
St1 2 tk

plans can be derived for the sI x . . . x Sk experiment in sn

trials, where s 1 is a prime or the power of a prime, sSl 2< ... < sk,

k
and 2 X.t.< (sn-)/(s -1) where I = X.< AX<_X3< ... < Xk, the X.i= 1 L L

being integers. An orthogonal main-effEct plan of tIis class exists for

the 4 x exper;,nent with only eight trials.

Theorem 3- Consider an urthogonal main-efect plan for (sn_ 1)/(s- 1)

factoi-s, each at s levels, with s ntrials, where s is a prime or thc

power of a prime number. Then a factor at t levels, where
2

s < t < s , can be introduced as a replacement for a suitably chosen set

of (s i 1) factors in such a ý -y as to preserve orthogonality of main-

.<-ffect estimates.

Proof: Let t = s There exists an ortnogonal main-effect plan for

(s - 1)/(s - 1) factors each at s levels in t = s trials. Hence a factor

having t = s2 levels can replace (s2- 1)/(s - 1) = (s+ 1) factors each
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having s levels. U t < s then a factor having s levtls can replace

(s + 1) factors each having s levels and then collapsed to a t-ievel

tactor by a many-one correspondence scheme.

Corollary 1: The mnaximum number of t-level factors (s< 1-< s< )

which can be introduced into an orthogonal maini-lffect plan fcr

(sn-l)/(s-ly factors, each at s level-s. with s trials is

(i) (s -1)1(s 2-1) if n is even and (-E) the largest integer less than or

equal Lo r(sn-¾L/(s-, -I j i n isý odd-

Corollary Z: A factor at t leveis, where s- < t< s can be

introduced as a re-placement for a suitably chz-sen set of "s in-I(s-1)

factors eacn having s levels in such a way a-s to weseryx the

orthogonality of main-effect estinatb

This replacement procedure vI be -illustrated by consroruct'-ig an

orthogonal main- effect plan for the 4 x -2 experim•ent in eight trial,_.

First construct n-- orthogonal main-effect plan fozr the 27 experime-nt.

The seven two-level factors caýbe represented by X,% X2# X 1 + x ?

X-, X1 + X 2 , X ( X1 + X + The treatment combinations

for this plan are the fLow1ng:

0000050

0001111

01 00 I

01 1 1 100

1010101

1011010
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1100110

1101001

It is known that there exists an orthogonal main-effect plan for the

e7aerimert - tfour trials. The treatment combinations for this pla"

ar=e i-j- . (0-- I), 10 1) and (I 1 0). Thus by choosing three

factnrs of the z plan whose X representations are such that the

ae ila tex:aion of any -wo of the three factors is the third

Sacto- Z twaevel f srt cian be replaced by a four-level factor

ac•ortC--g•ot= following corresp•ndence scheme

Twoý-eval Four-level

factor s factor

OC 0 0

0il 1

101 -•- 2

110 - 3

Since the X -epresentations ot te 5:rst three -actors of the above plan

are X 1 , X and X + X t thesc three factors can be repi-ced by a

4ur-level factor and the -rthogonal main-affect plan for the 4 X 24

experiment in eight trials is given by the following treatmeac combinations:

0 0000

0 WIII

1 0011

1 1100

2 0 101
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3 0110

3 1001

By collapsing the four-level factor to a three-level factor, an

orthogona] main-effect plan for the 3 x 24 experiment is obtained.

It can be easily verified that a suitably chosen set of (s -l)I(s-il)
3

factors, each having s levels, occurring in an orthogonal main-effect

plan with s6 trials can Le replaced by (s3-1)1(s-1) factors, each

having s levels. This p- Jposition can be illustrated by replacing

three e.ght-level factors by seven four-level factors in an orthogor-al

main-effect plan with sixty-four trials.

Consider the orthogonal main-effect plan for the 263 experiment in

sixty-four trials. Let each factor be renresented by an effect or

interaction of the 26 factorial experiment, namely XP, X , X 3 , X4 ,

X 5 , X6 or any one of their generalized interacticrs. From Corollary 2

of Theurem 3 it is clear that each eight-level factor introduced into the

plan replaces seven two-level factors. Let us denote three eight-level

factors by A, B and C, Table 12 gives the X representaticns for the

two-ievel factors which are replaced by the three eight-level factors.

Tt will be noted in Table 1Z that the X representations of the two-

level factors which are replaced by the eight-level factor C are the

general;-.ed interactions of the X representations of the two-level

factors which are replaced by factors A and B. Thus each row ,nf the

table represents three two-level factors which can be replaced by a

four-level -actor. Hence it is clear that three eight-level factors can be

replacer by seven four-level factors.
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TABLE lI

TWO-LEVEL FACTORS REPLACED BY EIGHT-LEVEL FACTORS

A B C

X xX X I + x2

X + X+ 4  XIrX XI +X + X+X

X X1 +X z+ X4 X I + +X+ X5 X 4 + X5

X3tX5XX +X3+Xs+X XI+Xz+X6

13 5 1 z3 5 ~61USX! + X3 + X, XI+3 + X5 + X 6 X 6

X+ +x +X +X X- +X X x +X +X1 2 3 4 5X 3 + 6  1 z 4 5~ 6

It is evident that the use of factors for which the levels occur with

proportional frequencies also yields orthogonal main-effect plans for

symmetrical factorial experiments. For example, an orthogonal main-

effect plan for the 35 experiment can be constructed with sixteen trials

by collapsing all the four-level factors in the plan for the 45 experiment

to three-level factors.

The use of factors whose levels occur with proportional frequencies

also ;e.Trrits the construction of orthogonal main-effect plans for factors

for which the number of levels is not equal to a prime or the power of a

prime. One such plan with forty-nine trials permits? uncorrelated main-

effect estimates for the 68 experiment. This plan can be constr Acted by
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"-ollapsing the seven-level factors to six-level factors in the plan for the

78 experiment.

E. Ffficiencies of Main-Effect Estimates

Although any many-,,ne correspondeice of the set of s1 levels to the

set of s. levels will yield proportional frequencies of the levels, there
I

arises the probjein of which correspojndence is "best" in some sense.

The problem may be solv- 1 by determining the efficiencies of the main-

effect estimates obtained usintg proportional frequencies relative to the

estimates which vwould result rom using equal frequencies of the levels

of each factor.

As an illustration we will calculate the relativc efficiency of a three-

level factcr in a main-effect plan with twenty-five trials.

Assume the correspondence scheme used to collapse a five-levAl

factor to three levels is as follows:

Five-level Three-level

factor factor

0 0

1 -- ) 1

3 - 2

4 - 0

The levels 0, 1, and 2 occur in the ratiot s Z 1 : 2. Thus for this

factor the 0 level occurs in ten treatment combinations, the I level

occurs in five treatr.ieia combinations and the 2 level occurs in ten

treatment combinations./85



The variance of the linear effect estimate of this factor is equal to

T 2/2O and hence the information on a unit basis is equal to

ZO/I25Z a 4/5r2. Thc variance of the linear effect estimate of a three-
1•c 2co n *o*n - 2 3n-

levl factor i trials is equal ' I /. .... Lhe ix1orMatiOiz 0oi a

unit basis is 2. 3 n-1/3n.2 :- /3o . Hence the relative efficiency of the

linear effect estimate is equal to 4/5 x 3/2 = 615.

The variance of the quadratic effect estimate for the three-level

factor in twenty-five trial_- s equal to -2/4 and the information is then

2 nequal to 4/25a- . The variance of the quadratic effect estimate with 3

trials is equal to - /2. 3n-2 and hence the information on a unit basis is
equal to 2/9 . The relative efficiency of the quadratic effect estimate

is therefore equal to 4/25 x 9/2 = 18/25.

The relative efficiencies of the estimated effects are presented for

various proportional frequencies in Table 13 . One would chose the

proportional frequencies which give the greatest efficiency of estimates.

Thus for example, if an experiment in twenty-five trials involved two-level

factors the two levels should occur in the ratio 2 : 3 rather than in the

ratio 1 :4 because the efficiency of the 2 : 3 ratio is 24/25 whereas

the efficiency of the I : 4 ratio is only 16/25.
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TABLE 13

RELATIVE EFFICIENCIES OF MAIN-EFFECT ESTIMATES

Level 0 1 Efficiency

Proportional frequency

1 : 2 8/9

Z : 3 24/25
1 : 4 16125

3 : 4 48149

2 : 5 40/49

1 : 6 Z4/49

Level 0 1 z

mContrast Proportional frequency

Linear 1 Z : i 314

Quadratic 1: a: 1 9/8

Linear Z I : 2 6/5

Quadratic Z 1: :Z 18/25

Linear 1: 3 : 1 3/5

Quadratic I : 3 : 1 :!71Z5

Linear 2 : 3 : 267

Quadratic 2 : 3: Z 54/49

Linear 3 : 1 : 3 9/7

Quadratic 3 : 1 : 3 27/49

Linear I : 5 : 1 3/7

Quadratic I : 5 : 1 45(49
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F. Blocking in Main-Effect Plans

Even though the orthogonal main-effect plans are highly fractionated

these plans may still require more trials than can be carried out under

uniform conditions. Thus it would be desirable to divide the experi-

mental data into smaller blocks in such a manner that' the main effects

ia•y still be estimated without correlation. In this secrioz± we will

illustrate the use of some of the factors in an orthogonal mai-n-effect

plans as blocking factors.

Consider the orthogonal main-effect plan for the 34 experiment with

nine trials. The treatment combinations for this plan are

0000

0112

022 1

1011

1120

1 202

m ~2022.

2.101

2210

If there are only three factors under investigation the fourth factor of the

above plan can be used as a blocking factor to yield the following blocks:

Block I Block Z Block 3

000 022 011

112 101 120

22 1 210 202
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The esLimate of the main effects of the three factors are clear of the

block effects since each level of the threc factors occurs once in each

block. The linear effect of the first factor is given by

1
1 (22 1 + Z 1 0 + Z 0 2 -10 C 0 - 0 2 - 0 11).

It is evident that each block effect enters this estimate once positively

and once negatively and hence the estimate is clear of block effects.

if the four factors in. the orthogonal main-effect plan are represented

by X 1 , X 2 , XI+X2 and dui+ tX 2 he use of the fourth factor as a

blocking factor is equivalent to confounding the factor represented by

X 1 + 2 X with blocks.

In general, if two factors are used as blocking factors then so are the

factqrs represe.nted by the generalized interactions of their X represen-

tations. For example, if the seven factors in the plan for the 27

experiment with eight trials are representeA by XI, X Z X 1 +X2

X 3 , XI + X 3 , X + X 3 and XI+X 2 +X 3 an orthogonal main-effect plan

for the 2 experiment in 4 blocks of 2 treatment combinations can be

obtained by using the factors represented by X 1 , X 2 , XI+X 2 as

blocking factors. This is equivalent to confounding X 1 , X 2 and XI + 2

with blocks.

Now consider the orthogonal main-effect plan for the 4 x 32 x 26

experiment with sixteen trials. The plan is comprised of the following

treatment combinations:
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0 00 0 0 000 0

0 1

011 10 0i1o

1 022, 110011

(11 011101

n 101 011011

S11 0 1 10 10 1

121Z 101000

S11p o000Il0

202 101101

S21 1 0 0 0 0 1 1

220 011110

- 1 211 10 0 i0

30 1 1 10110

312 011000

321 000101

3 1 0 101011

The following orthogonal main-effect plans which utilize one or more

of the factors as blocking factors may be constructed from the given plan:

; o• 2 25
(i) 4 x 3 x 2 in 2 blocks of 8 treatment combinations:

Using the last two-level factor as a blocking factor the two blocks

"consist of the treatment combinations presented below:
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Block I Block 2

000 00000 OZZ 1100

011 10111 011 01110

121 10100 101 01101

S112 00011 110 11010

2 20 01111 ZOZ 10110

Zl 11000 211 00001

301 11011 321 00010

312 01100 310 10101

(ii) 4 x 3 X in 4 blocks of 4 treatment combinations:

Consider the last three two-level facto=s only. The levels for

these three factors occur in the four sets 0 0 0, 0 1 1, 1 0 1 and

I 1 0 each occurring four times in the sixteen trials. Th treat-

ment combinations of the first six factors can be blocked according

to the pa ticular set to which the levelu of the last three factors

belong. Hence the four blocks are:

Block I Block Z Block 3 Block 4

000000 022110 011011 011101

1Z1101 101011 110110 1ZO000

211110 211000 ZOZi01 ZZO011

312011 310101 321000 301110

(iii) 32 x z6 in 4 blocks of 4 treaLment combinations:

Utilizing the four-level factor as the blocking factor the four

blocks are:
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Block 1 Block 2 Block 3 Block 4

00000000 01011011 02101101 01110110

11101110 10110101 11000011 12011000

?2110011 21101000 20011110 21000101

11011101 12000110 11110000 10101011

(iv) 4 x 3 x 26 in 4 blocks of 4 treatment combinations:

This plan can be constructed by considering the first three-level

factor tc be a fou- ievel factor and using th3t factor as a blocking

factor. If every second 1 in the first three-level factor of the

main-effect plan fcr the 4 x 3 x Z experiment is replaced by a

3 the sixteen treatment combinations then comprise a main-effect

plan for the 42 x 3 x 26 e>,-eri-nent.

Block 1 Block 2 Block 3 Block 4

00000000 01101110 02110011 01011101

11011011 10110101 11101000 1ZOO0110

22101i01 21000011 20011110 21110000

31110110 32011000 31000101 30101011

It is clear that in each of the above plans, the main-effect estimates

and the block effect estimates are uncorrelated.
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G. Randomization Proce-iure

An important aspect of most expririmental situations is the fact that

each experimental unit can be subjected to only one of the trcatmcnts of

interest. Because of this fact the variability due to heterogeneity of

experimental units will contribute to experimental uncertainty. To obtain

some control of this variability the device of randomization is used in

the statistical design of exneriments. This technique implies, essentially,

that random methods of selection and assignn-ent are employed in

carrying out the experiment.

The procedure recommended for assigning treatments at random to

the experimental units of an orthogonal main-effect plan is as follows:

(i) Choose the appropriate plan.

(ii) Randomly assign the factors to the columns of the chosen plan.

(iii) Randomly assign the levels of each factor to the rnumbers

0, 1, Z, ... , representing the levels of a factor.

(iv) Randomly assign the treatments to the experimental un:tA.

To illustrate this procedure we shall describe the randurrizuri'jkn

procedure to be followed with an experiment involving three factors

A, B and C.. ea.h having three levels and one factor, D, it two •evels.

The appropriate orthogonal main-effect plan for this experimen. is given

by the following nine treatment combinations.
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0 0 0 0

0 1 1 0

0 2 2 1

1 0 1 1

1 1 Z. 0

1 z 00V

2 0 2. 0

Z 1 0 1

2 2 1 0

Assign the iactors A, B and C at random to the first three columns

of th- above plan and assign fartor D to the fourth column. Then, for

each of the factors A, B and C randomily assign the three levels to 0,

I and Z. Similarly for factor D assign the two levels to 0 and 1 at

random. Then these treatments are assigied to nine experimental units

at random, for example, by testing the cc.-ibinations in random order.

H. Analysis of Main-Effect Experiments

An important feature -f the full factorial arrangement is that the

main effects and all interactions can be estimated without correlation

Since the main-effect plans developed in this report allow uncorrelated

estimates of all main effects the analyses of these experiments are

similar to the analysis of a complete iactorial experiment. Estimation

is based on the general procedure described in Chapter II, and a quick

review of aspects relevant to main effect plans %ill now be given.

The multiple regressio.z model f.r an orthogonal main-efftct exps-ri.-

ment can be written in rnatrix notation as y = X•3 + e where P is the
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vector of effects and interactions. The estimates of the effects and

interactions are given by (XTX)-I X t y, where (XIX)-1 is the

variance-covariance matri-. The property of uncorrelated estimates is

reflected in the fact that the variance-covariance matrix is a diagonal

mnatrix.

To illustrate the estimation procedure we consider the plan for two

two-level factors, A a-.d B, and two three-level factors, C and D,

the levels being equally spaced, in nine trials, when all interactions are

assumed to be absent. The play, is given by the following set of treatment

combinations:

0 0 0 0

0 1 1 2

00 2. 1

i 0 1 1

1 1 0

1 0 2

00 z Z

0 1 0 1

0 0 1 0

The responses yijkr may be expressed in terms of the main effects

as
CL CL' C +d D + D+

Yijk1 3 1 + ai A - bLj B+ k . CQ + dm L + dm. D + e ijkm

where A, B, CLO CQ, DL and D are the effects of the respective

factors and ai, b, ck L, Ck Q, drmI, d are the coefficionts of the
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orthogonal contrasts defining the corresponding effects. The factors are

assumed to be quantitative factors and the levels of thc factors a:e

equally spaced.*

If any of the factors are qualitative, they can still be treated as

quantitative factors, except that what are contrasts of specific meaning

in the quantitative case, such as linear and quadrlatic effects, are merely

contrasts among the levels of the qualitative factors. For example, if

we use the numbers 0, 1 and 2 to denote the levels of a ftctor, F, at

three levels and get what look superficially to be linear and quadratic

effects, they are in fact

L= Fz -F 0

Q= F - 2FI - F 0 = (F 2 - F 1 ) - (FI - F 0 )

where L and Q denote the linear and quadratic effects and F. denotesI

the treatment combinations which contain factor F at the i level. From

such calculated effects one can determine any contrasts which seem

relevant. For instance

Fz - F 1 = (L + Q)/Z

and

FI - F 0 = (L - Q)IZ.

If the levels of quantitative factors are not at equally spaced intervals

the effects can still be written in terms of orthogonal contrasts. A
procedure for obtaining orthogonal polynomials for unequally spaced levels
is given in section C of Chapter V.
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The matrix of known coefficients* is given by

l A I D !DP A -B CL 3 ,Q L 3DQ
r"

1 -1 -I -1 1 -1 1

1 -1 z 0 -2 1 1

I -i -1 1 1 0 -z

X= 1 2 -1 0 -2 -2

1 2 Z 1 1 -1 1

1 2 -.1 -1 1 i 1

1 -1 -i 3 1 1 1

1 -1 2 -1 i 0 -2

LI -1 -1 0 -2 -1 1

Hence the information matrix is

F 9  0 0 0 0 0 0

0 18 0 n 0 0 0

0 0 18 0 0 0 0

XtX= 0 0 0 6 0 0 0

0 0 0 0 18 0 0

0 0 0 0 0 6 0

0 0 0 0 0 0 18

The coefficients of the parameters are obtained by a convention
which is discussed in section C of Chapter V.
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Since X'X is a diagonal matrix the plan is orthogonal and the variance-

covariance matrix is given by

Z 0 0 0 0 0 O1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0-r 0 0 0 3 0 0 0

0 0 0 0 0 3 0

L 0 0 0 0 0 1

The estimates of effects and interactions ar.

2 2 2 2 2 2 2 2 Y2

sA -1 -1 -1 2 2 2 -.1 -1 l1y33.3

1B -1 2 -1-1 2 -1-1 2 -1 Y

CL --18 -3 0 3 0 3 -3 3 -3 0

-C Q -2 1 -2 1 1 1 1 -2 Y6

SL -3 3 0 0 -3 3 3 0 -3

DQ , L 1 I -Z - 2 1 I Z IY 8

LY9

where Y1, y2, "'"' Y9 are the responses of the nine treatment

combinations in the order presented in the plan.

Thus, for example,



-SA -- T-9 -yI -YZ Y3 + ? Y4 +÷ ZYS + ? Y6-Y7 "Y8 -Y9J

and L L • - YI + y3 +y5 - Y6 +y7 - Y8]

The variances of the estimates are obtained from the variance-

covariance matrix. Thus,

I -(;. = ,-ar (r 2 12

vart ) varbL D o-/6
L)rL c

var(%.Q) var(DQ) a 2,z

7

An unbiased estimate of (r is derived from the sum of squares of

deviations about the estimated values, namely

"-2 1
(Y'y - P'X'y)

The sum of squares in the analysis of variance associated with any

contrast is merel. the square of the contrast divided by the sum of

squares of the coefficients of the contrast. Hence, the sum of squares
1

due to -A is

ýI r'- Yl - Y2 -Y3 + ?Y4 + 2Y5 + 2Y6 - Y7"- Y8 _-Y9j 2
102

The sum of squares due to A is then

Ir C -Y " - Y3 +3 ZY4 + ZY5 2' 6 - Y 7Vy y 9 j 2

If the total sum of squares is corrected for the mean, the partitioning

for the analysis of varia.,ce is given in Table 14.
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TABLE 14

PALRTITIONING OF ANALYSIS OF VARIANCE

Scurce Degrees of Freedom

A 1

B I

CL 1

CQ 1

D

SQ 1

Error 2

Total 8

It is clear that the two degrees of freedom av3ilable for estimation of

error are the result of collapsitig twc three-level factors to two-level

factors. The cstimate of error can be partitioned into single degrees of

freedom as follows. Consider the levels of factor A and factor B as

they were before being collapsed. The levels are then given as

Levels oi factor A: 0 0 0 1 1 1 2 z 2

Levels of factor B: 0 1 Z 0 1 Z 0 1 z

In order to collapse a three-level factor to a two-level factor we make

the correspondence

1 C



Three-lev ei Two-level

fa,:L,.,r factor

0 - 0

1 -1

z 0

if factors A and 3 were three-lovel factors then

AL Y ' - -- Y3+Y74 Y8+ Y,))

and Ban• L - ("Y! Y3 -Y4 4 y6 "Y7 +y Y9

Since these two factors have only two levels and the level of factor A is

0 for each resporine in the z;=.%-atc A and the level of fuctor B is

0 for each response in the estimate BL, then these contrasts are

estimating pure error. Thuzs, the two single degrees of freedom
z

estimates of Tz are given by

( -Yl -Y - + +y8 + 2y9)

and Y1(- y+ y 3 - Y4 + y 6 - y 7 +Y

The partitioning of the analysis of variance is presented in Table 15.

If several estimates of error are possible one can determine whether

they are homogcneous estimates of error (e. g. Bartlett's test) and if

they are found to be hormogeneous thcy can be combined to give a pooled

estimate of error. Evidence of estimates of error being not poolable is

evidence that there are interactions present in the situation, and further

experimentation to explore these is needed.
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TABLE 15

PARTITIONING OF ANALYSIS OF VARIANCE

Source Degrees of Freedom

A 1

B

CL 1

CQ 1

DL 1

D Q

Error A I

Error B 1

Total 8
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V. CATALOGUE OF ORTHOGONAL MALN-EFFECT PLANS

A. Construction of Basic Plans

The task of presenting a catalogue which gives every possible

orthogonal main-effect plan with 81 trials or fewer is enormous and need

nnt eadert•-cn., Each of these plans can be easily deduced from one

of twenty-six "basic plans", by choosing a suitable seL of columns.

Consider the orthogonal main-effect plan for the 34 experiment in

nine trials. It was demonstrated in Chapter IV that •rom this plan one

3 2 z 3
can obtain plans for the following experiments: 33 x Z, 3 x 2 , 3 x 2

and 2 4. If a plan which consisted of the plans for both the 34 experi-

ment and the Z4 experiment in nine trials is given, then the plans fornyneoth34, 33 2 ,32 3 Z4

yone of the 34, 33 xZ, 32 xZ, 3 x or experiments can be

obtained by selecting the appropriate number of columns from the plan

ior the 34 and 24 experiments, respectively. The plan which consists

of the plans for both the 34 experiment and the 24 experiment in nine

trials is called a basic plan.
t t t^

Similarly a basic plan for the 4 1 x 3 x 2 j experiment in sixteen

trials is a plan consisting of the plans for the 45, 35 and 215 experi-

ments.

Each colunmn of the basic plan represents a factor. The number of

levels of any factor can be determined by counting the number of

different sy-nibols (, 1, 2, etc. which represent the levels. The columns

are numbered so that each column may be identified quickly. The

numbering of the columns may best be explained by an example. The

column numbers on the four-level factorc of basic plan 5, which conz-ists
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of the plans for the 45, 35 and Z experiments in sixteen trials, are:

1 2 3 4 5.

The numbers on the three-level columns for this plan are also

1 2 3 °- 5 .

The numbers on 'he two-level factors range from 1 to iS where for

tabular convcnience Lhese numbers are written in the form

I Z 5

The footnote given below the basic plan indicates that the column

"ithe columns identified by i 2 and ' the

column identified by , replaces the columns identified by 5 an

1 5 6

and s3 on. Hence, if a four-level factor identified by 1 is used in an

orthogonal main-effect plan then the three-level-factor identified by
I

column * and the three two-level factors identified by columns 0 01 2 n

00 cannut be used.3

B. Use of the Catalogue

In this section we will illustrate the use of the catalogue with several

exaMples.

( 10:

The index of orthogonal main-effect plans given in seci-on D of this

chapter indicates that a plan can be obtained for th- ZI0 experiment in

twelve trials from basic plan 4. The basic plan has twelve treatr-ent
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combinations and eleven factors. Choose any tt, columnns of this plan

and the required plan is obtained.

23
(ii) 3 x 2:

The plan for the 3 x 23 experiment in eight trials can be determined

from basic plan 2. The footnote to this plan indicates that if the three-

level factor is c..osen then the two-level factors nurrmbered 1, 2 and 3

cannot be chesen. Thus the plan is obtained by choosing the column

representing the three-level factor and 2ny three of the four calumns

4, 5, 6 and 7.

A plan for the 3 x 23 experiment in nine trials is given by basic

plan 3. The plan can be obtained by choosing column I from the three-

lcevel factors and columns Z, 3 and 4 from the two-level factors. It is

clear that a plan for the 3 x 23 experiment can be obtained from basic

plan 3 by choosing any one of the four columns fur three-level factors

and three columr.s from the two-level factors, no column of the two-level

factor having the same column numnber as the column number of the chosen

t,-Xee-level factor.

(iii) 4 2x3x25

"ITh index indicates that an orthogonal main-effect plan for theS 5

4 x 3 x 2 experiment can be constructed in sixteen trials from basic

plan 5. The plan may consist of the columns numbered and from
3 1 1 1

the four-level tolumns, * from the three-level columns and of' I 2

and from the two-level columns. The use of the four-level
3 4

columns and 2 eliminates the use of the three-level columns

columns. and



/II

identified by ! aid and also -' two-level columns identified by

0 U 0 0 0 and 0 Th. use of the three-level column * eliminatesi L, 3 4 5 "
0 0 0

the use of the two-level columns 0 0 and
78 9.

(iv) 8 x4 .x 2
S83 47 Z--0

A plan for the 8 x 4 x Zi experiment in sixty-four trials may be

deduced from basic plan 25. If the three eight-level factors chosen are

the columns identifiedbyJ, au and then the four-level factors

identified by the seven columns numbered

0 0 0 0 0 0 0
1 234567

and the two-level factors identified: dy the columns numbered from 0to1
2 cannot be used. We then can choose the seven four-level factors to be

the columns numbered

0 1
8 to 4

Thus the ten two-level factors must be chosen from the coluxtins

numbered 4 to6
3 3

C. Tables of Orthogonal Polynomials

The orthogonal contrasts which define effects and interactions can be

readily determined from a table of orthogonal polynomials. The ad-

vantage of using orthogonal contrasts to define effects and interactions

arises from the fact that orthogonal polynomials are so constructed that

any term of the polynomial is independent of any other term. This
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property of independence permits one to compute each regression

coefficient independently of the others and also facilitates testing the

significance of each coefficient.

Tables of Orthogonal Polynomials for the case of equally spaced

le'els are readily available, e.g. Fisher and Yates (1938), Anderson

and Houseman (1942). it would be an impossible task to compute the

orthogonal polynomials for unequally spaced levels. However a ihnple

procedure for computing these orthogonal polynomials is available and

will be presented below. If equally spaced levels do not each occur in a

plan an equal number of times the published tables of orthogonal

polynomials are not appropriate. The orthogonal polynomials for equally

spaced levels which do not occur in a plan with equal frequency must be

computed by the following method for unequally spaced levels.

For any set of orthogonal polynomials the linear contrast is of the

fu :m Z (a + Px)yx, where a and j3 are constants, x is the level at

which the factor occurs, y x is the response to the treatment combination

with the factor at the x level and the summation is over every value of

x whicn is represented. The quadratic and cubic contrasts are of the

form M(a + 1x + yx ) and 1;(a + x + yx + 6x 3)yx respectively.

The extension to higher order contrasts is obvious. Two contrasts are

, "thogonal if the coefficients of each contrast sum to zero and the sum of

oroducts of the corresponding coefficients of the two contrasts is zero.

We will illustrate the procedure for obtaining orthogonal polynomials

for unequally spaced levels with an example.

Consider an independent variable x with levels 0, 1, 2 and 4.
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The coefficients of the linear, quadratic Pnd cubic .'ont-r. sts for this

example is displayed in Table 16.

TABLE 16

COEFFICIENTS OF ORTHO JONAL CONTRASTS

Level of Linear Quadratic Cubic
x

0 a a 0.

1 aa+.+3 P+ y+P++ 6

2 a+C2j a+ 2p+ 4y a+ 2+ 4y+ 86

4 a+ 4p a+ 4p + 16y a + 4p + 16 y+ 646

The coefficients of the linear contrast must surn to zero. Thts,

4a +7p3 = 0.

Setting I3 = 1 we find that a = - 7/4. In order that the coefficients of

the orthogonal contrasts be integers reduced to lowest terms we multiply

these coefficients by 4 to obtain P3 = 4 and a = - 7. Substituting

a = - 7 and P = 4 in the linear contrast given in Table 16, gives the

linear coefficients.

Level of Coefficient of

x lir ear contrast

0 -7

1 -3

2 1

4 9
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The coefficients of the quadratic contrast must sum to zero. Hence,

4a+713+ Zy = 0.

The sum of products of the corresponding coefficients of the linear and

quadratic contrasts must also equal zero. Ti~us,

35p + 1 4 5 y = 0 .

Solving thesc two equations to obtain integral values for a, P and Y we

obtain c = 14, p= -29 a-i y = 7.

11 we substitute these values in the quadratic contrast and reduce the

resulting coefficients to lowest terms the coefficients of the quadratic

contrast is given by

Level of Coefficients of
x Quadratic contrast

0 7

1 .-4

2 -8

4 5

Si..ilarly the sum of the coefficients of the cubic contrast and the sum of

products of the corresponding coefficients of the linear and cubic contrasts

and the quadratic and cubic contrasts must each equal zero. Hence,

4a+ 70 + Zly+ 736 = 0

35A + 145y + 5816 = 0

44y + 2 5 2 6 = 0

Solving t&ese equations to obtain integral values for a, 3, y and 6 we

obtain a - 36, p - 392, y = - 315 and 6 = 55. If we substitute these
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values in the form of the coefficients of the cubic contrast given in

Table 16 and reduce tne rcsulting coefficients to lowest terms, the

coefficients of the cubic contrast are given by

L,-.vel of Coefficients of

x Cubic contrast

0 -3

1 8

z -6

4 1

The orthogonal polynomials are presented in the following table.

TABLE 17

ORTHOGONAL POLYNOMIALS

Level of Linear Quadratic Cubic
x

0 -7 7 -3

1 -3 -4 8

z 1 -8 -6

4 9 5 1

The symbol P represents one unit of the linear effect of a factor

when set equal to unity. In order to obtain integral coefficients P was
1

set equal to 4 and hence 3 represents one unit of the Ilijear effect.

Consequently the linear contrast with coefficients given in Table 17
1

represents the estimate of i the linear effect of the factor. It is easily
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verified that the coefficients of the quadratic contrast are given by

7 - Z x 7 xz

where x = 0, 1, 2 and 4, respectively. Thus the symbol y7 y

represents one unit of the quadratic effect, and the linear contrast with
2

coefficients given in Table 17 represents the estimate of 2 the quadratic

effect of Lhe idctor. Similarly it may be demonstrated that the cubic

contrast with coefficients -" ren in Table 17 represents the estimate of

12/55 the cubic effect of the factor.

This constant which is multiplying each effect will be denoted by 1

and in the tables of orthogonal polynomials the value of X and the sumn of

squares of the coefficients denoted by L, will both be given. Thus any

contrast defined by the coefficients given in the tables of orthogonal
1

polynomials represents - times the appropriate effect of the factor. It

was this convention by which the coefficients of the paran-etrs for the

example in section H of Chapter IV were calculated.

In the tables of orthogonal polynomials the coefficients of a linear

contrast will be denoted by 01, the coefficients of a quadratic contrast

by 92 and so on. The levels of a factor will be denoted by x.
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D. IndCex of Orthogonal Main-Effect Plans

The index presented in this section indicates the basic plan from

which any orthogonal main-effect pian can be deduced with a minimum

number of trials. Unless the experimenter must use a plan with a

minimum number of trials there is usually a choice of basic plans from

which an orthogonal main-effect plan can be constructed. For example,

the basic plan from which the main-effect plan for the 34 experiment

can be constructed in 16 trials is basic plan 5. However a plan for this

experiment can be constructed from basic plan 7 in 18 trials. The use

of one basic plan over another depends on which contrasts are deemed to

4 3be most important. The orthogonal main-effect plan for the 3 . 2

experiment in 16 trials estimates the two-level factor with an efficiency

of unity and estimates the linear effect of the three-level factors with

efficiency 3/4 and their quadratic effects with efficiency 9/8. The plan

with 18 trials estimates the effects of the three-level factors with an

efficiency of unity and the effect of each two-level factor with an efficiency

of 8/9. If the effects of thc three-level factors are the more important

then the plan with 18 trials should uic chosen -nd if the effects of the two-

level factors are the more important then the plan with 16 trials should

be chosen.

The notation used in the index requires some explanation. The plan
20+1' n2

3 2 . Zr ,in = 5 in 54 trials indicates that orthogonal main-effect

plans can be constructed in 54 trials, from basic plan ZZ, for the

following experiments:

1 ZO



320 2, 32124 32 z3 23 2 Z 324 and 25

The notation is used to reduce the number oi entries necessary" to list all

the possible plans. The plan 47 31 2 0-3n = 0,1,2 i 32 trials

7 10 7 7 7 Z,2 4indicates that the plans for the 47. z1, 4. 3.2 and 47. a . 2

experiments can be construtLed in 32 trials. The plan

ti t nl n7  n
6 .4 .3 . z 3, Et. = 8, Zn =8-4nI represents the following

experiments:

tI tt2 n n3 tI t7 n, n,
6 5 ,3 , X t =8, Izn.=8; 6 5 4.3 &. 2 P, Mt._8, 2;n. 4 ;

t I t
61 5 42 Et.=8.

121



Plan Number of Basic Page

trials plan

3 4 1 139

77 8 2 139

211 12 4 140

215 16 5 141

.11 ZO 8 142

23 24 9 143

Z27 28 1z 146

z31 32 13 147

Z35 36 15 149

239 40 16 150

z43 44 17 !;!

247 48 18 152

251 52 21 155

Z55 56 23 157

259 60 24 158

z 6 3  64 25 159

3.24 8 2 139

3. 12 16 5 141

3.228 32 13 147

,.2 60 64 25 159

3.2 9 3 140

3229 16 5 141
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Plan .'hnnber of Basic Page
trial- plan

2 Ul3 . 27 11 145

3.z 32 13 147

32257 64 25 159

3.2 9 3 140

33. 26 16 5 141

3 10 13. 2 27 145

3 22 32 13 147

33. 54 64 2. 159

34 9 3 149

4. 16 5 141

34. - 27 11 145

34. 219 32 13 147

34.2 24 22 156

34.251 64 25 159

35 '6 5 141

35 2 18 7 14Z

35. 8 Z7 11 14S

35 216 32 13 147

35 250 22 156

35.248 64 25 159

U23



Plan Number of Basic Page
trials plan

36.2 18 7 142

36.27 27 i1 145

36. Z13 32 13 147

36 . 29 54 zz 156

36. 25 64 25 159

37 18 7 142

37.2 6 27 11 145

312 10 3Z 13 147

37.218 54 22 156

37. Z42 64 25 159

38.25 27 11 145

3.2 32 13 147

3.17 54 Zz 156

38.2 39 64 25 159

3224 27 11 145

39. z16 54 22 156

39. a36 64 25 159

31023 27 11 14•

10 15 22 !56
3 2 5
310 33 64 25 159

124



Plan Number of Basic Page
trials plan

3112 Z7 11 145

311 z14  54 22 156

31 30 64 25 159

•Nz

31.2 27 11 145

3 1Z 13 54 156

312227 64 25 159

319 28 81 26 162

33 27 11 145

13 12
3 .z 54 22 156

313 Z24 64 25 159

313 227 81 26 162

14 113 .2 54 156

S14 2 64 25 . 159

34 Z6
314 226 81 26 162

15 10
35.2 54 2z 156

315 218 64 25 159

315 25 81 .6 162

316 29 5 22 156

316. 215 64 25 159

316. 224 81 26 16Z
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Plan Number of Basic Page
trials plan

317 54 22 156

17 12
3 . 64 25 159

31. 2 81 26 162

38 27 54 22 156

18 ,3 .2' 64 25 159

31 21 8 26 162

3 2~ 54 22 156

319 23 21 81 26 162

3 .2 , 'En.=5 54 22 156I

20+n 1 n,

3 .2 "?, Zni=20 81 26 162

4. Z4 8 2 139

4. 3n 2123n n=O,l1...,4 i6 5 141

n n
4.3 . , 2n.=5 25 10 144I

4. 3n 228n n=Ol,...,8 32 13 147

n I LI
4.3 . En. = 10 50 20 154I

n I 3n 2
4.3 -. En.=20 64 25 159

n~l '2n
4.3 .2 , En.=3 6  81 26 162
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Plan Number of Basic Page
trials plan

4 32. n=0,1,...,3 16 5 141

Z. n1n n= 4  25 i0 144

Z n 25-3n-144 . 3n. -, n=0, 1.... ,7 32 13 147

2-.1 2 ni-9 11544 .3 .2 E Zn- 50s 20 14

n 3n-
4 .3 12 , nin = 19 64 25 159

n zn

4. -.. , 2n. =32 81 26 16ZI

4 .3n , n=0,1,Z 16 5 141
31 25 n)zi

43"1 , n.=3 25
1

4 3. 3 n222-3n, n=0,,...,6 32 13 147

433 n- z F n =8 50 20 154

43.3 n.2n, Zn.=18 64 25 i59I

n• n
4 .1 nn2 2, n.=28 81 26 162

4 n 3-*3n
4. 3n. , n=O, 1 16 5 141

4 4.3nl n2 2n. 25 in 144I

4 4. 3 n 2 93n n= 0, ,...,5 32 13 147

1Z7



Plat) Number of Basic Page
trials plan

44 .3Z , .n=7 50 20 154

4 4 3  1. n, i.= 17 64 Z5 159

nI n
44.3 z , YZn.= 24 81 26 16z

45. 16 5 141

4 .3 -.2 Z5 10 144

45 3 n16-3n7 n= 0, ,..., 4 3Z 13 147

S453n Znz, Nn.6 50 20 154

4 D3 .3 2, .n.=1(. 64 25 159

r5 . n
45.3 .Z ,n 20 31 Z6 162

,6 25 10 144

6 n 13-3n4. 3. z , n= 0, 1, ... 3 3Z 13 147

46.3n.z , Zn.=5 50 Z0 154

6n13n 2
46 3nl~Z , En.=15 64 Z5 159

46.3n2n, •n..±i6 81 Z6 162

7 n10-34 .3.z2 , n=0,1,Z 32 13 147
Sn I n

4'. 3.z, En =4 50 20 154
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Plan Number of Basic Page
trials plan

7n I3n47.3 .lz 2, n.= 14 64 Z5 159

4 3n 2 , n=O ,I 32 13 147

48.3 n.2 =n. 3 50 20 154

R Ln,4.3 .2 ', Nn.=13 64 25 159
1

4 2 32 13 147

4 3l 2 ,En. 2 50 20 1541

n 3nf
493 1.2 2 in.= 12 64 25 159

1

4103 Z, n. = 1 50 20 154

10n13n 2

410.3 l , -n. =11 64 25 159
1

4 11 50 20 154

11+nI n2 3n3

4 3 2. , Zn.=10 64 25 159
I

5.z8 16 6 141

n n2
5.3 .2 E •-.i=9 27 11 145

n 2 - 3
5.4 , n. =5 25 10 144

UZ9



Plan Number of Basic Page
trials plan

n 3In.2 24-3(nl+n,)
5.4 13 . n. =0, 1,... 6  32 14 148

1

n, nf n.,5.4 3 z. i, = 10 50 20 154
I

TI n 56-3(nl+n,)5.4 13 n.2 , 1,...,16 64 25 159
1

5.4 3. 2 n.= 36 -4n1 81 26 16z

5.nI r.. n3
5 24 13 . .Z 3 n.4 25 10 144

52. 4 1nZ- 3 , -n.= 6 49 19 153

5 Z. 4 1 . 3Z. 2  , a. = 9 50 20 154

2 nI1 n 2 n+n2 }
5 .4 .3 .2 , En.=0, ,...,15 64 25 159

5 1 4n.3n2. 2n3, z n n.= 3Z-4n1  81 26 16Z

3 nI nl TIn3
.4 3 .2 a 25 10 144

53.4hI3 .Z ,n.= 5 49 19 153
I

53.4 n3 z n •= 8  50 -0 154

3 I ni 3n3
53. 4 3 2. 3, En. =14 64 25 159

n, n n3
5 3.4 A.3 2. 2 ,.Mn. 28-4n1  81 26 162

4 n 3,
5.44 3n. , n."= z 25 10 144
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Plan Number of Basic Page
trials plan

5 4 n 2 •, = 4 49 19 153

544 . 3 .2n3, En.=7 50 20 154

15 4. 4nl,. 3 n, 2 3-(n+, , .n.= 0,I, ... , 9 64 Z5 159

54. 4n1. 3n2*. Zn3, M ni 24-4.1 81 26 162

n n n4~5 . 1 n1 2. 3,2n 1 25 10 144

5 55.4n1 3 i.i 3, 2n 3 49 19 153

.n n n

55.4n1 3 2.23 1;n. 6 50 20 154

5 5 . 4 n 1 . 3 n 2 , 28-3(n+n) 0,1..8 64 25 159

S5.4 1.3 2. n3,, nn.i=Z0-4n 81 26 16Zi 1'
526 25 10 144

6 nl nz n3  153

5 .4 .3 . 2 ,En i=5 4901.3. Zn n.=5 50 20 154

56.nni.3n .3, •n7 64 25 159

5 6 . nl 3n . 2n 3 , Zn 16"4ni 81 Z6 162

5 .4 1.3 Z. , En.=1 49 19 153
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Plan Number of Basic Page
trials plan

k7 n I n 2 n 3. 4 3 2 , 2; n i = 4 50 20 154

7 n, n, 14-3(n I +z, 2)
5 4 .3 '. ? Tn 64 25 159

7 n I n z n 3
5 4 3 2 En 12-4n 1 81 26 162

5 8 49 19 153

8 n 1 n ? n 35 4 3 z En 3 50 20 154

8 n 1 n 2 7-3(n I +ný
5 4 3 2 En i 0, 1 64 25 159

n n, n8 1 35 4 3 2 Z n = 8-4n, 81 26 162
i

9 n I n 2 n 3
5 4 3 2 Zn i = 2 50 20 154

5 9. 4 1. 3 Z. 2 3, n i = 4-4n 8 i 26 162

10 n I n 2 n 3
5 4 . 3 . 2 , Z n 1 50 20 154

5 50 20 154

6.2 8 16 6 141

n I n 2
6.3 E rvt 9 27 11 145

n n, 24-3(i,,+n
1 2)

6.4 . 3 2 Z n 0, 1'. 6 32 14 148
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Plan Number of Basic Page
trials plan

n nZ n3

6 .4 ) I- Z , 11•. -, 49 19 153
1

6.n. n., 56-3(nl+n•6. 3 ". - , n=0, 1i. 16 64 25 159

n6 n. 2

"6.4 •. 3 . 3 n . =36 -4n 81 26 162

n 1n 2
6.5.4 .23 2 .n. -=6  49 19 153I I

. n, n 2 49-3(ni+n2 66. . 2 ni -= O , It .... ,1 5 64 25 159

n I n 2 113
6.5.4 .3 2z J, Z n.=3 --4n 81 Z6 162

r-i n. , n 3 n4
6 .5 .4 3 n i n=8 49 19 153

t t 2 n 1  z 3n3
6I5 . . 2 t.i=3, En n=14 64 25 153

61 5. 4 3n" 2 Eti=3, En.=Z8-4n1  81 26 162

t n2 35-3(nl+n2 )
6 .5 .4 .3 .z

I; , t =4, Zn.= 0,I,...,9 64 25 159

i6tl. 2. 1.n.,3 .n An26 166 5 4 3 L. ,ti=4, En. = 24-4n 81 i6 162

t I t 2 n I n 228-3n+,
5 .5 .4 .33 2.

2ti=5, n=0, It,...,8 64 25 159

6 5 .4 1 32. 3, Mt= 5, En. =0-4n 81 26 16L
t1 11 13n

t t 2n In 23n3
6152 4 .3 . , Eti=6, Eni 7 64 25 159

1332



I
Plan Number of Basic Page

trials plan

1. t . 1. 2 , t-n 16n6 1 4 3 2 2 , •ti 6, En.=16-4n1  81 26 162

t t 2n n i4-3nl+n)
61.5 .4n13 4 .3

1t.=7, En.=0, 1, 64 25 159

tl tz 4l ng n3

6 1.5 4. 1.3 . , 2 2 i7, Z3ni=12- 4 n 81 26 16Z

t- tz nI n 7 -3(n 1,- ,2
6 t.5 .24 ., 3 2.2 , t , -nO, 1 64 25 159

t1 t n1 n3-- 6 ~.5 '.4 •3 .Z., 2•ti8, Zni=8-4n 1  81 26 162

116.5, zt.9 64 25 159

6 5 2.4 1.3 2.z 3, 2i =9, Eni=4-4n 1  81 26 162

ti t2

6 ". 5 , zt. = 10 81 26 162L

7.28 16. 6 141

nI n.
7.' .2 -, n i=9 27 11 145

n I n zn 24-3(nl+n,)
7.4 3 2 ,n 0, 1, 6 32 14 148

1

"7.4 3n2 . Eni=7 49 19 153

nI1 n 2 56-3(n1+n,) 
6

7.4 .3 2 , .n.0, 1, ... 64 2S 159

7.4 13Z.23, n=36-4n1 81 26 162i 1

n1 n2 3
7.6 .5 . 3 n.=7 49 19 153

1
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Plan Number of Basic Page
trials plan

t t., n.n p 49-3(nl+n?)
7.6 5 .4 3

Zt.= 1, Zni=O,l,.--, 15 64 Z5 159

7.6t 5t. 4 n. 3.2 n 3 t1,En=32-4n 1  81 26 162

7 n 1 . 6 n2. 5n3.4n4.3n5. zn6, En=
8  49 19 153

t Itz. 1 n5.4. 3, .3n 3 , 1 64 25 159
7 • , "t £=3, --ni= J4

11

7 . 6'. 5'. 4 . 3

It t =4. En V,I,. 
9  64 25 159

"7 1. 6 t. 5t3. 4n- 11n2. zn3 Eti =4, Eni= 28- 4 n 1  81 26 162

t, t 2 t3  nI 38-3(nl+n 2)

7 L6 .5 3.4 .31 . 2

Eti=54 Zni= 0, 1,...,8 64 25 1597tl 1. 6 .5 34n 1 .23 ; =,2ni= 4Z 5

t . 6t 7 t 3 4 n 1 . 2n 3, E t 624, ni= 16-4n 1 81 26 16z

tl i . Lt 8"3(n!+n3
)

7 .6 .5t.4n.3 
3

1 Zt=5, n.n 0- 4 n1  81 26 162

t 1  t 2 t ¾ z23n

.6 E .5t 4n ,'" 3 = 0t1=6, n.n 7  64 Z5 159

.6 t2. .4n.3n. ,3 Zt. 6, •n.=16-
4 nI1  81 26 16

tl 2 n n, 14-3(nl+n2 )
7 .6t *5t3-4 1-3 .2

•-i7 $n -0,1,2 64 25 159

7 t6 . 5t3. 4n. 3. 2n3, ti =7, Eni = 12-4nI 81 Z6 162
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Plan Number of Basic Page
trials pkan

t t t n n 7-3(nl+n?)

7 . 5 4 . 3 .2

T t._8, Z.=0,1 64 Z5 159

t t t n n n
7 1.6. 3 n4 1 2 .2 ,t8, Mn. 8-4n1  8'. 24 162

7 16 . s3* '.3 Z' 4t=9 .n= n 81236

n, n n'

1 1597 n .53 Eni = 9 64 25

7 1. 6tZ. 5t3. 4n1. 3nZ 2 .2 Lti= 9, En i= 4-4n! 81 26 1.62

inl 6n. n 3 10 81Z6 16

7 .6 .5 , Eni.=0 81 26 162

8.28 16 6 141

nl.2 n n 27 11 145

n 24-3(nl+n?)
8.4 .3 2.2 , 2;n.=o, I,.... 6  32 14 148

n, n. 56-3(n1 !-nZ) 159
8.4 .3n.2 , 2Zn= o0,1, ... ,16 64 25

8.41.3 . n, En= 36 -4ný 81 26 162
1A

t t t n r 49-3(ni+.>,)
8.7 .62.5 .4 1.3.2

t.--, •,n.=0,l,...,15 64 25 159
L. L

t t t-. 11 n n
17 . 5 -4 1. 23,

"Z. I , ti .n 32-4n 81 26 162

t 1  7t. 6t. t n1 n 3n..

8. 7 .6 4 n 4 ., 3 2 z. , 3 t =3, Zn. 14 64 25 159
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Plan Number of Basic Page
trials plan

8i 74 n1726 5 .4 .3 2.n,

Et£ 3, Z a. "- 28-4ni 81 Z6 162

t t t t nZ 35-3(n,+n?)

t.7 .6 .5 .4n.3 .2

Et t4, >n= 0, 1l,...,9 64 25 159

t t t n I n -3
8.72.6t3.5 54 .3 2 ,

-t. ;4, Zn. = 24-4nI 81 26 162
t t2t3t n. n., 2S-3(n,+nj;

8 17t6.5 ' .3 -. Z

Et -5, E n = 0, 1, ... ,8 64 25 159

t 1t t4 1 n n
8 .7 .63. 5.4 .3.23,

Ft.= 5, En.= ZO-4n1  81 26 162
z I

t t t n., 3n3
t 6 t 3 . 5t 4. .4 2  Eti- =6, .ni=7 64 25 159

ti tz t 3 1.1 l n. n3
tl.7 .6 .5 5 .4 .3 .z

Iti= 6, Eni= 16-4n, 81 Z6 162

tIt 6t 3 t 4 . n. 14.3(nI+n,)8 .tz. .5 4n.3 .

Eti= 7, E qi= 0, 1, Z 64 25 159

t t t 4 r 3.
8 " t.6 .5-4 13 '2

Et =7, En.= 12-4n, 81 26 16Z
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Plan Number of Bi.i-r Page

trials plan

t1 n 1 nz 7-3(ni+n?)

8 .77 .5 4.4 .3 .2

nti= 8, n. = O, 1 64 25 159

t1 .7 t .tt4 A n .n n3,

zti=8, in= 8-4n 1  81 Z6 162

nI n n3 n
8.7 26 5. 4, Eni9 64 25 159

t t t nl nl n81.726 35 44 n3 3z

Zt. 9, Zni=4-4n- 81 Zb 162

nI n n 5n4
8 17 6. 3. 4, 'n.=10 81 26 162

n1
9.3 .Z, in.=9 27 11 145

nI n n., n A n5 n6 n7 no
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F. Basic Orthogonal Main-Effect Plans

BASIC PLANI: 2 3; 4 trials

123

000

101
110

BASIC PLAN Z: 4; 3; 27" 8 trials

* * 1234567

o o 0000000
0 0 "'001111
1 1 0110011
1 1 0111100
2 2 ICO010!
2 2 1011010
3 1 1100110

3 1 1101001

*-1,293
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BASIC PLAN 3: 34; Z 4 9 trials

1234 1234

0000 0000
0112 0Q10
0221 0001
1011 1011
1120 1100
1202 1000
2022 0000
2101 0101
2210 0010

BASIC PLAN 4: Z 11 12 trials

00000 00'o00!
12345 678901

00000 000000
11011 100010
01101 110001
10110 111000
01011 011100
00101 101110
00010 110111
10001 011011
11000 I01101
11100 010110
01110 001011
10111 000101
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BASIC PLAN 5: 45 35 ; 2 15; 16 trials

12345 12345 00000 00001 11111
****t ***** 12345 67890 12345

00000 00000 00000 00000 0000
01123 01121 00001 10111 01110
02Z.11 02211 00010 11011 10011
03312 01112 00011 01100 11101
10111 10111 01100 00110 11011
11032 11012 0110l 10001 10101
12320 12120 01110 11101 01000
13203 11201 01111 01010 00130
2024.2 20222 10100 01011 01101
21301 -1101 10101 11100 00011
22013 22011 10110 10000 11110
23130 21110 10111 00111 10000
30333 10111 11000 01101 10110
31210 11210 11001 11010 11000
32102 12102 11010 1011-, 00101
33021 11021 11011 00001 01011

1-000 2-000 3-000 4-111 5-111
*-123 *-456 *-789 *-012 *-345

B,.SIC PLAN 6: 8:; 7 6; 5'; 28 16trialR

1 1 1 1 23456789

0 0 0 0 00000000
0 0 0 0 11111111
1 1 1 1 00001111
1 1 1 1 11110000
2 2 2 2 00110011
2 2 2 2 11001100
3 3 3 3 00111100
3 3 3 3 11000011
4 4 4 4 01010101
4 4 4 4 10101010
5 5 5 1 01011010
5 5 5 1 10100101
6 6 2 2 01100110
6 6 2 2 10011001
7 3 3 3 01101001
7 3 3 3 10010110
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BASIC P1AN -7: 37 1 10

1234567 1234567

0000000 0000000
0112111 0110111
0221222 0001000
1011120 1011100
1120201 1100001
1202012 100)010

SZ022102 C000i00
2101210 0101010
2210021 0010001
0021011 0001011
0100122 0100100
t'212200 0010000
1002221 1000001
1111002 1111000
1220110 1000110
2010212 001CO10
2122020 0100000
2201101 0001101

BASIC PLAN 8, z19 ; 0 trials

00000 00001 11111 1111
12345 67890 12345 6729

00(100 00000 00000 0000

11001 !1101 01000 0110
01100 11110 10100 0011
10110 01111 01010 0001S11011 00111 10101 0000

01101 10011 11010 1000
00110 11001 11101 0100
00011 01100 11110 1010
00001 10110 01111 0101
10000 11011 00111 1010
Ž1000 01101 10011 1i01
10100 00110 11001 1110
ul040 00011 01100 1111
10101 00001 10110 0111
11010 100C0 110io 0011
11101 010 0 01101 10o
'1110 1010, 00110 1110
01111 M1101 00011 0110
00111 10101 00001 1011
10011 11010 10000 1101

1 4Z



I

BASIC PLAN 9: 2 23; Z4 trials

00000 00031 11111 11112 222
12345 67890 12345 67890 123

00000 00000 00000 00000 000
11I1i 01011 00110 01010 000
n11i1 .nol0 10011 0()101 000
00111 ilC0o 11001 10010 10G
00011 11101 01100 11001 010
00001 11110 10110 01100 101
10000 11111 01011 00110 010
01000 01111 10101 OGi 001
10100 00111 11010 1100i 100
01010 00011 11101 01100 110
00101 00001 11110 10110 011
10010 10000 11111 01011 001
11001 01000 01111 10101 100
01100 10100 00111 11010 110
00110 01010 00011 11101 011
10011 00101 00001 11110 101
11001 10010 lo00n0 11111 010
1100 11001 01000 01111 101

10110 01100 10100 00111 110
01011 00110 01010 00011 111

10101 10011 00101 00001 111

11010 11001 10010 10000 111
11101 01100 11001 01000 011
11110 10110 01100 10100 001
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BASIC PLAN 10: 56 46; 36; 26-; 25 trials

123456 121456 123*56 123456

000000 000000 000000 000000
011234 011230 011220 011110
022413 022013 022012 01101O
033142 033102 022102 011101
044321 J00321 000221 000111
101111 101111 101111 101111
112340 112300 112200 111100
123024 123020 122020 111010
134203 130203 120202 110101
140432 100032 100022 1000!1
202222 202222 202222 101111
213401 213001 212001 111001
224130 220130 220120 110110
230314 230310 220210 110110
241043 201003 201002 101001
303333 303333 202222 101111
314012 310012 210012 110011
320241 320201 220201 110101
331420 331020 221020 111010
342104 302100 202100 101100
4u4-44 000000 000000 000000
410123 010123 010122 010111
421302 021302 021202 011101
432031 032031 022021 011011
443210 003210 002210 001110
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313; ,13BASIC PLAN 11: 9; 8; 7; 6; 5; 4; 3 23 ; 27 trials

00000 000Cl III 0000C. 00001i 1l
. , * . * , 12345 67890 123 12345 067890 123

0 0 0 0 0 0 00000 00000 000 00000 00000 000
0 0 0 0 0 0 00001 12121 212 00001 10101 010
0 0 0 0 " 0 00002 21212 121 00000 01010 101
1 1 1 1. 1 1 01120 00111 122 01100 00111 100
1 1 1 1 1 1 01121 12202 001 01101 10000 001
1 1 1 1 1 1 01122 21020 210 01100 01000 010
2 2 2 2 2 2 02210 00222 211 00010 00000 011
2 2 2 2 2 2 02211 12010 120 00011 10010 100
2 2 2 2 2 2 02212 21101 00' 00010 01101 000
3 3 3 3 1 1 10ii0 11001 111 10110 11001 111

3 3 3 3 1 1 10111 20122 020 10111 00100 000
3 3 3 3 1 1 10112 02210 202 10110 00010 000
4 4 4 4 3 3 11200 11112 200 11000 11110 000
4 4 4 4 3 3 11201 20200 112 11001 00000 110
4 4 4 4 3 3 11202 02021 021 11000 00001 001
5 5 5 4 3 3 12020 11220 022 10000 11000 OC
5 5 5 4 3 3 12021 20011 201 10001 00011 001
z, 5 4 3 3 12022 02102 110 10000 00100 110

6 5 6 5 4 2 20220 22002 222 00000 00000 010
6 6 6 -' 4 2 20221 01120 101 00001 01100 101
6 6 6 5 4 2 20222 10211 10 00000 10011 010
7 7 6 5 4 2 21010 22110 011 01010 00110 011
7 7 6 5 4 2 21011 01201 220 01011 01001 000
7 7 6 5 4 2 21012 10022 102 01010 10000 100
8 0 0 0 0 0 22100 22221 100 00100 00001 100
8 0 0 0 0 0 22101 01012 012 00101 01010 010
8 0 0 0 0 0 22102 10100 221 00100 10100 001

*-1l2,3,4
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BASiC PLAN Ie: Z27 ; 28 trials

00000 00001 11111 11112 22222 22
12345 67890 12345 67890 12345 67

00000 00000 00000 00000 00000 00
10111 10000 10001 00111 01011 01
11011 10000 01100 10001 11101 10
01111 10001 00010 01010 10110 11
000:0 11110 01010 00110 11101 01
00011 Gulll 00001 10011 00111 10
00001 11110 10100 01001 11010 i1
W1OO 01010 01001 01010 11011 10

11100 01101 00100 00111 01100 11
11100 00110 10010 10001 10111 01
10001 00101 01011 01,10i M110 00
10111 01010 00101 11100 10100 01
11001 M1100 00110 11110 00011 00
01110 10110 00011 .1iOi 01000 10
101i0 11101 11000 10100 10010 10
11011 00111 11000 11010 01000 Oi
01101 11011 i1000 01101 00101 00
00110 01000 11110 11011 01110 00
00101 00011 01110 10100 01011 11

1 OlO 00100 11101 01100 00111 11
00100 10101 01101 11011 10001 01
10010 00011 10110 01111 10001 10
01001 01000 11011 10111 10000 11
11010 11011 01111 00001 00010 O1
01111 01101 10111 00000 11001 00
01000 10011 10101 10110 11110 00
10101 10110 11111 00010 00100 10
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BASIC PLAN 13-, 49"; 39; 231; 32 trials

123456789 123456789 00000 00001 11111 11112 22222 22 2233
********* ********* 12345 67890 12345 67890 12345 67 8901

000000000 000000000 OOOCQ 00000 00000 00000 00000 00 0000
011231111 C11211111 00001 10111 ullilO 01101 10110 11 0000
022312222 022112222 00010 11011 10011 10110 11011 01 0000
033123333 011121111 00011 01100 11101 11011 01101 10 0000
101111032 101111012 01100 00110 1111 01100 01101 01 0011
110320123 110120121 01101 10001 10101 00001 11011 10 0011
123203210 121201210 01130 11101 01000 11010 10110 00 0011
132032301 112012101 '111 01010 00110 10111 00000 11 0011
202Ž23102 202221102 10100 01011 01101 110• 10001 01 0101
213012013 211012011 10101 lIlOC 00011 10100 00111 10 0101
220131320 220111120 10110 70000 11110 01111 01010 00 0101
231300231 211100211 10111 00111 10000 OUlO 11100 11 0101
303332130 101112110 11000 01101 10110 10101 11100 00 0110
312103021 112101021 11001 11010 11000 11000 01010 11 0110
"321020312 121020112 11010 10110 00101 00011 00111 01 0110
330211203 110211201 11011 00001 01011 01110 10001 10 0110
002130213 002110211 00003 01010 11110 00010 10111 10 1111
013301302 011101102 00001 11101 10000 01111 00001 01 1111
020222031 020222011 00010 10001 01101 10100 01100 11 'II1

031013120 011011120 00011 00110 00011 11001 11010 00 1111
103021221 101021221 01100 01100 00101 01110 11010 11 1100
112210330 112210110 01101 11011 01011 00011 01100 00 1100
121333003 12111'001 01110 10111 10110 11000 00001 10 1100
130102112 110102112 01111 00000 11000 10101 10111 01 11OL
200313311 200111111 10100 00001 10011 11011 OC11 11 1010
211122200 211122200 10101 10110 11101 10110 10000 00 1010
222001133 222001111 10110 11010 00000 01101 11101 10 1010
233230022 211210022 10111 01101 01110 00000 01011 01 1010
301202323 101202121 11000 00111 01000 10111 01011 10 1001
310033232 110011212 11001 10000 00110 11010 11101 01 1001
323110101 121110101 11010 11100 11011 00001 10000 11 1001
332321010 112121010 11011 01011 1001 01100 00110 00 1001

.- 000 2-000 3-000 4-111 5-111 6-111 7-122 8-222 9-222
*-123 *-'56 *-789 *-012 *-345 *-678 *-901 *-234 *-567
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BASIC PLAN 14: 8; 7; 6; 5; 46; 36 , 224; 3Ztrials

0 0 0 0 234567 234567 00000 00011 11111 111 222222
1 1 1 1 ****** ****** 23456 78901 23456 789 012345

0o 0 0 o 000000 000000 00000 00000 00000 eoo ocococ
1 1 1 1 010123 010121 00001 10000 11101 110 001111
3 3 3 3 001212 001212 00000 00111 01011 101 011110
2 2 2 2 011331 011111 00001 10111 10110 011 010001
1 1 1 1 102011 102011 01100 01010 00011 011 110101
0 0 0 0 112132 112112 01101 11010 11110 101 112010
2 2 2 2 103203 101201 01100 01101 01000 110 101011
3 3 3 3 113320 111120 01101 11101 10101 000 100100
2 2 2 2 220022 220022 10110 10000 00101 101 111100
3 3 3 3 230101 210101 10111 00000 11000 011 110011
1 1 1 1 221230 221210 10110 10111 01110 000 100010
0 0 0 0 231313 211111 10111 00111 10011 110 101101
3 3 3 3 322033 122011 11010 11010 00110 110 001001
2 2 2 2 332110 112110 11011 01010 11011 ow 000110
0 0 0 0 323221 121221 11010 11101 01101 011 010111
1 1 1 1 333302 111102 11011 01101 10000 101 011000
4 4 4 4 121101 121101 0110 30110 11000 011 001100
5 5 5 1 131022 111022 01111 00110 00101 101 000011
7 3 3 3 120313 120111 01110 10001 10011 110 010010
6 6 2 2 130230 110210 01111 00001 01110 000 0'2101
5 5 5 1 023110 021110 00010 11100 11011 000 111001
4 4 4 4 033033 011011 00011 01100 00110 110 110110
6 6 2 2 022302 022102 00010 11011 10000 101 100111
7 3 3 3 0J2221 012221 00011 01011 01101 011 101000
6 6 2 2 301123 101121 11000 00110 11101 110 110000
7 3 3 3 311000 111000 11001 10110 00000 000 111111
5 5 5 1 300331 100111 11000 00001 10110 011 101110
1. 4 4 4 310212 110212 11001 10001 01011 101 100001
7 3 3 3 203132 201112 10100 01100 11110 101 000101
6 6 2 2 213011 211011 10101 11100 00011 011 001010
4 4 4 4 202320 202120 10100 01011 10101 000 "11011
5 5 5 1 212203 212201 10101 11011 01000 110 010100

2-000 3-000 4-001 5-111 6-111 7-11
*-234 *-567 *-890 *-123 *-456 *-789
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BASIC PLAN 15: 2 35; 36 frial6

00000 00001 11111 121i2 22222 22223 33333
12345 678913 12345 67890 12345 67890 12345

00000 00000 00000 00000 00000 00000 00000
01011 10001 11110 11100 10000 10101 10010
00101 11000 11111 01110 01000 01010 11001
10010 11100 01111 10111 00100 00101 011001)1001 01110 00111 11011 10010 00010 10110

00100 10M1 00011 11101 11001 00001 01011
10010 01011 "0001 II0 11100 10000 10101
11001 00101 11000 11111 01110 01000 01010
01100 i0010 11100 011.1i 10111 00100 00101
1 0110 (0".. 01110 00111 1011 10010 00010
01011 00100 10111 00011 11101 11001 00001
10101 10010 01011 10001 IlliC 11100 10000
0101 11001 00101 11000 2111 01110 01000
00101 01100 10010 11100 01111 10111 00100
00010 10110 01001 01110 00111 11011 10010
00001 01011 00100 10111 00011 11101 11001
10000 10101 10010 01011 10001 11110 11100
01000 01010 11001 00101 11000 11111 01110
00100 00101 01100 10010 11100 01111 10111
10010 00010 10110 01001 01110 00111 11011
11001 00001 01011 00100 10111 00011 11101
11100 10000 10101 10010 01011 10001 11110
01110 01000 01010 11001 00101 11000 11111
10111 00100 00101 0'100 10010 11100 01111
11011 10010 00010 10110 01001 01110 00111
11101 11001 00001 01011 00100 10111 00011
11110 11100 10000 10101 10010 0'011 1000o
11111 01110 01000 01010 11001 00101 11000
01111 10111 00100 00101 01100 10010 11100
00111 11011 10010 00010 10110 01001 01110
00011 11101 11001 00001 01011 00100 10111
10001 11110 11100 10000 10101 10010 01011
11000 11111 01110 01000 01010 11001 00101
11100 01111 10111 00100 00101 01100 10010
01110 00111 11011 10010 00010 10110 01001
10111 00011 1110i 11001 00001 01011 00100
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BASIC PLAN 16: 2 40 trials

00000 00001 11111 11112 22222 22223 33333 3333
12345 67890 12345 67890 12345 67890 12345 6789

00000 00000 00000 00000 00000 00000 00000 0000
11001 11101 01000 01100 1V001 11101 01000 0110

01100 11110 10100 OllO 01100 11110 10100 0011
10110 01111 01010 00010 10110 01111 01010 0001
11011 00111 10101 C0000 11011 00111 10101 0000
01101 10011 11010 10000 01101 10011 11010 1000
00110 11001 11101 01000 00110 11001 11101 0100
00011 01100 11110 10100 00011 01100 11110 1010
00001 10110 01111 01010 00001 10110 01111 0101
10000 11011 00111 10100 10000 11011 00111 1010
01000 01101 10011 11010 01000 01101 10011 1101
10100 0O010 11001 11100 10100 00110 11001 1110
01010 00011 01100 )1110 01010 00011 01100 1111
10101 00001 10110 01110 10101 00ool 10110 0111
11010 10000 11011 00110 11010 10000 11011 0011 i
11101 01000 01101 10010 11101 01000 01101 1001
11110 10100 00110 11o0o 11110 10100 00110 1100
01111 01010 00011 01100 01111 01010 00011 0110
00111 10101 00001 10110 00111 10101 00001 1011
10011 11010 10000 11010 10011 11010 10000 1101
00000 00000 00000 00001 11111 11111 11111 1111
11001 11101 01000 01101 00110 00010 10111 1001
U OI 11il1o 10100 00111 10011 00001 01011 1100
10110 0-111 01010 00011 01001 10000 10101 1110
11011 00111 10101 00001 00100 11000 01010 1111
01101 10011 11010 10001 10010 01100 00101 0111
60HO 1i~i Uioi~ 11;.1 11001 00110 00010 1011
00011 01100 11110 10101 11100 10011 00001 0101
00001 10110 01111 01011 11110 01001 10000 1010
10000 11011 00111 1010i 01M11 00100 i1000 0101
01000 01101 10011 11011 10111 10010 01100 0010
10100 00110 11001 11101 01011 11001 00110 0001
01010 00011 01100 11111 10101 11100 10011 0000
10101 00001 10110 01111 01010 11110 01001 1000
11010 10000 11011 00111 00101 01111 00100 1100
11101 01000 01101 10011 00010 10111 10010 0110
11110 10100 00110 11001 00001 01011 11001 0011
01111 01010 00011 01101 10000 10101 11100 1001
00111 10101 00001 10111 11000 01010 11110 0100
10011 11010 10000 11011 01100 00101 01111 0010
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BASIC PLAN 17:, 243 ; 44 trials

00000 00001 11111 11112 22222 22223 33333 33314 444
12345 67890 12345 67890 12345 67890 12345 67890 123

00000 0000C0 00000 00000 00000 00000 00000 00000 000
11001 01001 11011 0110 01013 10000 01000 11010 110
01100 10100 11101 11110 00101 11000 0010001 011
10110 01010 01101 01101 10010 11100 00010 00110 101
11011 00101 00111 01111 10001 01110 00001 00011 010
01101 10010 10011 10111 11000 10111 00000 10001 101
10110 11001 01001 11011 11100 01011 10000 01000 110
01011 01100 10100 11101 11110 00101 11000 00100 100
10101 10110 00100 01110 11111 00010 111 00010 001
11010 11011 00101 00111 01111 10001 01110 00001 000
10001 O110 000010011 10111 11000 10100 00000 111

001100 1010 11001 01001 11011 11100 01011 10000 010
00011 01011 00i00 01000 11101 11110 00101 11000 001
10001 1010i 10110 01010 01110 I1101 )0010 11100 000
01000 11010 11011 00101 00111 01111 10001 01110 000
0010 0001 01101 10010 10011 10111 11000 10111 000
00010 00110 10110 11001 01001 11011 M0O 01011 100
00001 00011 01011 01100 10100 11010 11110 00101 110
00000 10001 10101 10110 01010 01110 11111 00010 111
10000 01000 11010 11011 00101 00111 01111 10001 010
11000 00100 01101 01101 10010 10011 10111 11000 101
11100 00010 00110 10110 11001 01001 11011 I1100 010
01110 00001 00011, 01011 01100 10100 Mo101110 001

10111 00000 10001 10101 10110 01010 01110 11111 000
01011 10000 01000 11010 11011 00100 001iI 01111 100S00101 11000 00100 01101 01101 10010 10011 10111 110

00010 M1110 00010 00110 101100 01001 001 11011 111
10001 01110 00001 00011 01011 01100 10100 Mot III
11000 10111 00000 10001 10101 10110 01010 01110 1211
MOO0 01011 10000 01000 11010 11011 00101 00111 Oil

11110 00101 1111 00100 02101 01101 10010 10011 101
11111 00010 Moo0 00010 00110 10110 11001 01001 110
0111i 10001 01110 00001 00011 01011 01100 10100 111
10111 11000 i0ii 00000 10001 10101 10110 01010 Oil
Unl llo10 01011 10000 01000 11010 11011 00I01 001
1 1101 11110 00101 11000 00100 01101 01101 10020 100
0"1.0 M111 00010 MOO0 00010 00110 lol^,, inn 010

00M1 01111 10001 01110 00001 00011 01011 01100 101
10011 10111 11000 10111 00000 10001 10101 10110 010
01001 11011 11100 01011 10000 01000 11010 11011 001
10100 11101 11110 00101 11000 00100 01101 01101 too
01010 O01o11 M ll 00010 11100 00010 00!10 10110 110
00101 00111 01111 10001 01110 00001 00011 01011 Oil
10010 10011 10111 11000 10111 00000 10001 10101 101,
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00000 00001 11111 11112 22222 22223 33333 33334 44444 44
12345 67890 12345 67890 12345 67890 12345 67890 12345 67

00000 00000 00000 00000 00000 00000 00000 00000 00000 00
11111 01111 00101 01110 01001 10110 00101 01100 00100 00
01111 10111 10010 10111 00100 11011 00010 10110 00010 00
00111 11011 11001 01011 10010 01101 10001 01011 00001 00
, cli • c11 1i11i0 i011 11001 Polio 11000 10101 10000 10
00001 11110 11110 01010 11100 10011 01100 01010 11000 01

10000 11111 01111 00101 01110 01001 10110 00101 01100 00
01000 01111 10111 10010 10111 00100 11011 00010 10110 00
00100 00111 110A 11001 01011 10010 01101 10001 01011 00
00010 00011 11101 11100 10101 11001 00110 11000 10101 10
00001 00001 11110 11110 01010 11100 10011 01100 01010 11
10000 10000 11111 ulll 00101 01110 01001 10110 00101 01
11000 OlOOO 01111 10111 10010 10111 00100 11011 00010 10
01100 00100 00111 ii011 11001 01011 10010 01101 10001 01
10110 00010 co011 11101 11100 10101 11001 00110 11000 10
01011 00001 00001 11110 11110 01010 11100 10011 01100 O0
10101 10000 10000 11111 01111 00101 01110 01001 10110 00
01010 11000 01000 01111 10111 10010 10111 00100 11011 00
(00101 01100 00100 00111 11011 11001 01011 10010 01101 10
00010 10110 00010 00011 11101 11100 10101 11001 00110 11
10001 01011 00001 00001 11110 11110 01010 11100 10011 01
11000 10101 10000 10000 11111 01111 00101 01110 01001 10
01100 01010 11000 01000 01111 10111 10010 10111 001r) 11
10110 00101 01100 00100 00111 11011 11001 01011 10010 01
11011 00010 10110 00010 00011 11101 11100 10101 11001 00
01101 10001 01011 00001' 00001 11110 11110 01010 11100 10
00110 11000 10101 10000 10000 11111 01111 00101 01110 01
10011 01100 01010 11000 01000 01111 10111 10010 10111 00
01001 10110 00101 01100 00100 00111 11011 11001 01011 10
00100 11011 00010 10110 00010 00011 11101 11100 10101 11
10010 01101 10001 01011 00001 00001 11110 11110 01010 11
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